
Challenges in the Management of Large Corpora (CMLC-2)

Workshop Programme

14:00 – 14:10 – Introduction

14:10 – 14:30
Marc Kupietz, Harald Lüngen, Piotr Bański and Cyril Belica,
Maximizing the Potential of Very Large Corpora: 50 Years of Big Language Data at IDS Mannheim

14:30 – 15:00
Adam Kilgarriff, Pavel Rychlý and Miloš Jakubíček,
Effective Corpus Virtualization

15:00 – 15:30
Dirk Goldhahn, Steffen Remus, Uwe Quasthoff and Chris Biemann,
Top-Level Domain Crawling for Producing Comprehensive Monolingual Corpora from the Web

15:30 – 16:00
Vincent Vandeghinste and Liesbeth Augustinus,
Making a large treebank searchable online. The SONAR case.

16:00 – 16:30 Coffee break

16:30 – 17:00
John Vidler, Andrew Scott, Paul Rayson, John Mariani and Laurence Anthony,
Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort

17:00 – 17:30
Jordi Porta,
From several hundred million words to near one thousand million words: Scaling up a corpus
indexer and a search engine with MapReduce

17:30 – 17:50
Hanno Biber and Evelyn Breiteneder,
Text Corpora for Text Studies. About the foundations of the AAC-Austrian Academy Corpus

17:50 – 18:00 – Closing remarks

i

Editors

Marc Kupietz Institut für Deutsche Sprache, Mannheim
Hanno Biber Institute for Corpus Linguistics and Text Technology, Vienna
Harald Lüngen Institut für Deutsche Sprache, Mannheim
Piotr Bański Institut für Deutsche Sprache, Mannheim
Evelyn Breiteneder Institute for Corpus Linguistics and Text Technology, Vienna
Karlheinz Mörth Institute for Corpus Linguistics and Text Technology, Vienna
Andreas Witt Institut für Deutsche Sprache, Mannheim and University of Heidelberg
Jani Takhsha Institut für Deutsche Sprache, Mannheim

Workshop Organizers

Marc Kupietz Institut für Deutsche Sprache, Mannheim
Hanno Biber Institute for Corpus Linguistics and Text Technology, Vienna
Harald Lüngen Institut für Deutsche Sprache, Mannheim
Piotr Bański Institut für Deutsche Sprache, Mannheim
Evelyn Breiteneder Institute for Corpus Linguistics and Text Technology, Vienna
Karlheinz Mörth Institute for Corpus Linguistics and Text Technology, Vienna
Andreas Witt Institut für Deutsche Sprache, Mannheim and University of Heidelberg

Workshop Programme Committee

Lars Borin University of Gothenburg
Dan Cristea "Alexandru Ioan Cuza" University of Iasi
Václav Cvrček Charles University Prague
Mark Davies Brigham Young University
Tomaž Erjavec Jožef Stefan Institute, Ljubljana
Alexander Geyken Berlin-Brandenburgische Akademie der Wissenschaften
Andrew Hardie University of Lancaster
Nancy Ide Vassar College
Miloš Jakubíček Lexical Computing Ltd.
Adam Kilgarriff Lexical Computing Ltd.
Krister Lindén University of Helsinki
Jean-Luc Minel Université Paris Ouest Nanterre La Défense
Christian Emil Ore University of Oslo
Adam Przepiórkowski Polish Academy of Sciences
Uwe Quasthoff Leipzig University
Pavel Rychlý Masaryk University Brno
Roland Schäfer FU Berlin
Marko Tadić University of Zagreb
Dan Tufiş Romanian Academy, Bucharest
Tamás Váradi Hungarian Academy of Sciences, Budapest

ii

Table of contents

Maximizing the Potential of Very Large Corpora: 50 Years of Big Language Data at IDS
Mannheim
Marc Kupietz, Harald Lüngen, Piotr Bański and Cyril Belica...1

Effective Corpus Virtualization
Adam Kilgarriff, Pavel Rychlý and Miloš Jakubíček...7

Top-Level Domain Crawling for Producing Comprehensive Monolingual Corpora from the
Web
Dirk Goldhahn, Steffen Remus, Uwe Quasthoff and Chris Biemann...11

Making a Large Treebank Searchable Online. The SONAR case.
Vincent Vandeghinste and Liesbeth Augustinus..15

Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort
John Vidler, Andrew Scott, Paul Rayson, John Mariani and Laurence Anthony...............................21

From Several Hundred Million Words to Near One Thousand Million Words: Scaling Up a
Corpus Indexer and a Search Engine with MapReduce
Jordi Porta..25

Text Corpora for Text Studies. About the foundations of the AAC-Austrian Academy Corpus
Hanno Biber and Evelyn Breiteneder..30

iii

Author Index

Anthony, Laurence..21
Augustinus, Liesbeth.....................................15
Bański, Piotr..1
Belica, Cyril...1
Biber, Hanno..30
Biemann, Chris..10
Breiteneder, Evelyn.......................................30
Goldhahn, Dirk..10
Jakubíček, Miloš..7
Kilgarriff, Adam..7
Kupietz, Marc..1
Lüngen, Harald..1
Mariani, John...21
Porta, Jordi...25
Quasthoff, Uwe ...10
Rayson, Paul..21
Remus, Steffen...10
Rychlý, Pavel...6
Scott, Andrew..21
Vandeghinste, Vincent...................................15
Vidler, John..21
Witt, Andreas...1

iv

Introduction

We live in an age where the well-known maxim that “the only thing better than data is more data” is
something that no longer sets unattainable goals. Creating extremely large corpora is no longer a
challenge, given the proven methods that lie behind e.g. applying the Web-as-Corpus approach or
utilizing Google's n-gram collection. Indeed, the challenge is now shifted towards dealing with
large amounts of primary data and much larger amounts of annotation data. On the one hand, this
challenge concerns finding new (corpus-)linguistic methodologies that can make use of such
extremely large corpora e.g. in order to investigate rare phenomena involving multiple lexical items,
to find and represent fine-grained sub-regularities, or to investigate variations within and across
language domains; on the other hand, some fundamental technical methods and strategies are being
called into question. These include e.g. successful curation of data, management of collections that
span multiple volumes or that are distributed across several centres, methods to clean the data from
non-linguistic intrusions or duplicates, as well as automatic annotation methods or innovative
corpus architectures that maximise the usefulness of data or allow to search and to analyze it
efficiently. Among the new tasks are also collaborative manual annotation and methods to manage it
as well as new challenges to the statistical analysis of such data and metadata.

v

Maximizing the Potential of Very Large Corpora:
50 Years of Big Language Data at IDS Mannheim

Marc Kupietz, Harald Lüngen, Piotr Bański, Cyril Belica
Institute for the German Language (IDS)
R5 6–13, 68161 Mannheim, Germany
corpuslinguistics@ids-mannheim.de

Abstract
Very large corpora have been built and used at the IDS since its foundation in 1964. They have been made available on the Internet since
the beginning of the 90’s to currently over 30,000 researchers world-wide. The Institute provides the largest archive of written German
(Deutsches Referenzkorpus, DRK) which has recently been extended to 24 billion words. DRK has been managed and analysed by
engines known as COSMAS and afterwards COSMAS II, which is currently being replaced by a new, scalable analysis platform called
KorAP. KorAP makes it possible to manage and analyse texts that are accompanied by multiple, potentially conflicting, grammatical
and structural annotation layers, and is able to handle resources that are distributed across different, and possibly geographically distant,
storage systems. The majority of texts in DRK are not licensed for free redistribution, hence, the COSMAS and KorAP systems offer
technical solutions to facilitate research on very large corpora that are not available (and not suitable) for download. For the new KorAP
system, it is also planned to provide sandboxed environments to support non-remote-API access “near the data” through which users can
run their own analysis programs.†

Keywords: very large corpora, scalability, big data

1. History of corpora and
corpus technology at the IDS

While the IDS was founded in 1964, at least from 1967,
under the directors Paul Grebe and Ulrich Engel, a depart-
ment called Documentation of the German language was
in place, in which a text collection of contemporary Ger-
man was compiled and recorded on punchcards (Teubert
and Belica, 2014, p.300). The first electronic corpus to
be released was the Mannheimer Korpus I (MK I, 1969),
which comprised 2.2 million words in 293 texts of mostly
fiction, including some popular fiction, and newspaper text.
In 1972, a smaller, additional part called MK II with more
text types was added. In the subsequent project Grundstruk-
turen der deutschen Sprache, the MK data were extensively
analysed and used as the empirical basis in 17 published vol-
umes on grammatical themes between 1971 and 1981 (Teu-
bert and Belica, 2014, 301). Over the years, more corpora
were added, amongst other things from branches of the IDS
which were hosting specific projects, such as the Bonner
Zeitungskorpus (Hellmann, 1984). At that time, the cor-
pus data were maintained by the computing centre of the
IDS, and linguists had to specify their queries to program-
mers who would then formulate them in machine-readable
form. Between 1982 and 1992, the first proprietary concor-
dancer REFER was in use at the IDS computing centre. RE-
FER supported interactive, sentence-oriented queries in up
to 17 million running words including basic grammatical
categories, e.g. verb and adjective inflection. In 1991, the
project COSMAS (Corpus Search, Management and Anal-
ysis System) was launched with the goal of developing an
integrated corpus platform and research environment that
would enable linguists at the IDS to formulate and refine
their queries to the IDS text collections flexibly and inde-

†The authors would like to thank Michael Hanl and and Nils
Diewald for their help in preparing the present contribution.

pendently at their own personal computer. From the begin-
ning, the COSMAS developers subscribed to a set of in-
novative corpus linguistic methodological principles which
are still widely acknowledged in current corpus technology,
amongst other things the concept of a unified data model,
of multiple concurring linguistic annotations, and most of
all the introduction of the concept of a virtual corpus. A
virtual corpus is a sample of texts drawn from the com-
plete text collection according to a problem-specific view
described in terms of external (e.g. bibliographic, specified
in terms of metadata) or internal (e.g. the distribution of cer-
tain keywords, search patterns or annotations) criteria. Con-
sequently, as of 1992, when the software was first deployed,
the COSMAS system offered the tools by means of which
users could define their own virtual corpora such that they
were representative or balanced w.r.t to their own specific
research questions, as well as save or possibly publish them
(cf. al Wadi, 1994, p. 132ff).
The successor project COSMAS II was launched in 1995,
and from 1996, COSMAS could be used via the internet by
linguists all over the world. A part of the project had also
been concerned with acquiring more text data, and in 1998,
the project DRK I – Deutsches Referenzkorpus (German
reference corpus) started as a cooperation with the universi-
ties of Stuttgart and Tübingen. One of its achievements was
a mass acquisition of newspaper, fictional, and other text
types from publishing houses and individuals, and by the
end of the project in 2002, DRK contained 1.8 billion
tokens. Since then, Deutsches Referenzkorpus has been re-
tained as the name of all written corpus holdings at the IDS.
By 2004, the IDS corpus extension project had been made
a permanent project, and in 2012, DRK reached the size
of 5 billion word tokens. Since 2008, the IDS has also been
a partner in the national and European research infrastruc-
ture initiatives TextGrid, D-SPIN, and CLARIN, in which
the concept of virtual corpora has been extended and imple-

1

mented to encompass location-independent virtual collec-
tions (van Uytvanck, 2010).

2. Recent developments

• we organize our acquisition campaigns in waves, ad-
dressing 50 to 200 potential license/text donors at a
time

• in addition, we approach publishers (in particular the
relevant licensing departments) directly at book fairs
and sometimes on the phone

• in the negotiations, we seek to acquire licenses as
liberal as possible for scientific use, in order of pri-
ority: CLARIN-ACA, QAO-NC, QAO-NC-LOC (see
Kupietz and Lüngen, 2014)

• chances of convincing rights holders to donate li-
censes are on average 5%

• the expenses for the acquisition and curation of one
word of fictional text are presently around 25,000
times higher than the expenses for one word of
newspaper text (see Kupietz, 2014)

• considering only the regularly incoming text data ac-
cording to existing license agreements, the current
growth rate of DRK is 1.7 billion words per year

Table 1: Corpus acquisition trivia

As a result of recent campaigns and acquisition deals,
DRK has grown to over six billion word tokens until
2013, and further grown by a factor of four in the first half of
2014, now containing more than 24 billion word tokens. In
the following, we shortly describe the major recent contri-
butions – for more details see Kupietz and Lüngen (2014).

Wikipedia is an example of a web corpus that can be cu-
rated under a sufficiently liberal license, and we have made
available all German Wikipedia articles and talk pages in
DRK twice in 2011 (Bubenhofer et al., 2011) and 2013
(Margaretha and Lüngen, in preparation). The 2013 con-
version, for example, amounts to more than 1 billion word
tokens.
In cooperation with the PolMine project of the University
of Duisburg-Essen1, we have adapted all debate protocols
of parliaments in Germany (national and state level) since
around the year 2000 (comprising around 360 million word
tokens), and we continue to curate the protocols from pre-
vious years and other German-speaking parliaments.
We have also curated around 6 million words of fictional
text as a result of our 2011 campaign addressing publishers
of fiction, while more is in the conversion pipeline.

The bulk of the increase in DRK in 2014, however,
is formed by a large news database archive for which
we obtained DRK-specific rights from its commercial
provider, containing 102 million documents of press text,
specialized journals and specialized e-books. For the latest
DeReko release in 2014, we have prepared and included the
press data part, containing 98 national and regional newspa-
pers and magazines starting between 2000 and 2003, which

1 http://polmine.sowi.uni-due.de/

• the DRK corpus archive (without annotations and
version history) uses 550 GB disk space in 1500
files

• for corpus processing, we currently use a machine
with 48 cores and 256 GB RAM running CentOS 5.10

• all corpus processing is done in a massively parallel
fashion

• for pre-processing of raw data, we use Perl scripts,
pdf2html, TagSoup, and tidy

• for the main processing, we use the Saxon Enter-
prise Edition XSLT-2.0/3.0-Processor

• for coarse quality control, we use Adam Kilgarriff’s
(2001) measure for corpus similarity

• the POS annotation of the entire DRK archive re-
quires between 1 and 2 CPU months for each tool

• the annotation of near-duplicate clusters (mostly car-
ried out within same-source corpora only) (Kupietz,
2005) takes about 7 CPU days

• deriving dependency annotation of the entire
DRK archive requires between 2 CPU months
with Xerox XIP and 13 CPU years with MATE
(estimated value, based on a 2.5% DRK sample)

• the inter-annotation-tool-agreement on POS tags is
typically around 91.5% (see Belica et al., 2011, for
details)

• the primary data of DRK have been version-
controlled and stored in a Subversion repository (cur-
rently using 130 GB storage) since 2007

• all DRK releases, including primary and annota-
tion data, have been redundantly archived on off-line
storage devices since 2009

• long-term preservation and metadata export for OAI-
PMH (OAI-PMH, 2008) is currently being migrated to
our centre for the long-term preservation of German
linguistic research data (Fankhauser et al., 2013)

Table 2: Corpus processing trivia

amounted to more than 16 billion new word tokens. As a
result, the latest DRK release contains more than 24 bil-
lion word tokens and takes up 550 GB of disk space without
annotations (see 2). The new data not only increase the size
but also the disperson of genres and topics in DRK (see
Kupietz and Lüngen, 2014).

3. Big Data?

“Big Data” is a broad and fuzzy term, allowing for numer-
ous particular interpretations. Whether it is taken to mean
an amorphous mixture or simply an extremely large amount
of data of some specific kind, the Deutsches Referenzkorpus
DRK fulfils both definitions: the latter in a straightfor-
ward way, given its current size and growth (see Figure 1),
and the former thanks to its status as a primordial sample,
from which users can draw virtual corpora (see section 1.
and Kupietz et al., 2010).
Figure 2 shows that, measured by the required number of
units of the contemporary portable storage medium, the
amount of memory needed for the primary text data of
DRK was actually highest in the beginning in 1969 (fac-
tor 400), then decreased to a level of around factor 1 in 1992,
where it has remained since then. Only the storage require-

2

100 million

1 billion

3 billion
5 billion

10 billion

20 billion

1970 1980 1990 2000 2010

w
or

ds
publicly accessible via COSMAS/KorAP (QAO−NC)

only IDS−internally accessible (QAO−NC−LOC:IDS)

downloadable (CC−BY−SA or CLARIN−ACA−NC)

total

Figure 1: Development of the size of DRK in words and its accessibility since 1969 (see Kupietz and Lüngen, 2014,
for explanations of the license-abbreviations).

1

100

200

300

400

1970 1980 1990 2000 2010

fa
ct

or

primary data only

with annotations

Figure 2: Development of DRK’s storage requirements since 1969 in relation to contemporary portable storage media.
(The figures until 1993 are estimated. For 1969 a box with 2000 punchcards was taken as reference.

ments of the linguistic annotations provided for DRK
have increased as of 2008, i.e. after the introduction of three
new taggers for linguistic annotation (Belica et al., 2011),
to a factor of almost 100 of current storage units in 2014
Hence, if we consider the corpus sizes over the years in re-
lation to the available portable storage media, it turns out
that the IDS has actually dealt with “big data” ever since
the introduction of language corpora.

4. Licensing very large corpora or:
 “Why don’t you just make it open-access?”

Almost as long as its tradition of constructing corpora and
making them available to the scientific community is the
IDS’s tradition of being the notorious bearer of – and some-
times the convenient scapegoat for – the bad news: DRK
cannot be made available for download. The simple reason

3

is not that the IDS is a “bad center” that likes sitting on “its
data”. The reason is of course that the IDS – just like every
other provider of comparable corpora – does not have the
right to to make the data available for download and that the
acquisitions of such a right, e.g. via national licenses, for
corpora of the size of DRK or a fraction thereof, would
hardly be within the limitations of public funding (cf. Kupi-
etz et al., 2010, p. 1849). To our relief, however, this fact
is now becoming more and more common ground in the
community.2 This is largely due to the generally increased
awareness of intellectual property rights and other personal
rights thanks to the Google Books discussion and possi-
bly also thanks to the educational work carried out within
CLARIN, often invoking more or less desperate analogies
to confront the lack of understanding, such as, e.g., Paweł
Kamocki’s (2013) analogy with Victor Lustig’s selling of
the Eiffel Tower in 1925, the image of the car-industry be-
ing ‘anti-science’ due to not providing linguists with free
cars, the tightrope that corpus providers walk on (Kupietz,
2009), the cowboy who prefers to shoot first (Ketzan and
Kamocki, 2012), or the one with Lady Justice and the bal-
ance of interests (next paragraph).
In any case, thanks to this development, approaches aiming
at improving the situation for researchers without interfering
with the equally legitimate interests of rights holders (on
whose donations the researchers vitally depend after all) can
nowadays be discussed more openly. As sketched in Fig-
ure 3 (Kupietz, 2010), there are more factors involved in
such a typical balance of interests and most of them can be
gradual. Accordingly, there are many toeholds for such im-
provements (including the attachment of the scale, in anal-
ogy to the legal framework) and to achieve the best results,
ideally all of them should be taken into account. One of the
very promising approaches is to extend the stack of “tech-
nical precautions” in such a way that the possible types of
use can be extended to include most types of research that
would otherwise only be possible if the corpus were avail-
able for download. Part of our current work in this direction
is sketched in section 5.2..
Apart from such technical measures along the lines of Jim
Gray’s (2003) “put the computation near the data” (see also
Kupietz et al., 2010; Bański et al., 2012), in our acquisition
campaigns, we always try and have always tried to negotiate
licenses that are as open as the respective rights holder al-
lows it without the stack of “money” growing too high (see
Table 1). Open licenses are great, but what to do if a rights
holder does not want to sign them, even if you have been
quite inventive to put everything you have on his scale pan?

5. Accessing DRK: COSMAS and
KorAP

At present, DRK is accessible via the Corpus Search,
Management and Analysis System COSMAS II (al Wadi,
1994; Bodmer Mory, 2014). It is currently used by more

2 Ironically, however, a slight step backwards was triggered by
the open-access movement involving some confusion concerning
the actual rights-holders of corpus texts in contrast to the rights-
holders of research data in other disciplines, where the rights be-
long to the researchers themselves or at least to the scientific com-
munity.

than 32,000 registered users and can handle a DRK part
of about 7-8 billion words (in one archive) with up to 2 mor-
phosyntactic annotation layers. Due to its having been de-
signed already in the early nineties, its scalability has now
reached its limits, because it depends, for example, on hold-
ing all indices in RAM and because there are currently no
solutions to distribute the system over multiple machines.
Because of the above limitations, in 2011 we started the
project KorAP (Bański et al., 2012, 2013, 2014), to develop
a new corpus analysis platform from scratch, aiming at a
scalable and extensible scientific tool, sustainable for a life-
cycle of 20 years. Since January 2014, KorAP has been
open for IDS-internal alpha testing.

5.1. Scalability
One of the major aims for KorAP has been to achieve hori-
zontal scalability, in order to support a theoretically unlim-
ited number of tokens with a theoretically unlimited num-
ber of annotation layers built upon those tokens. This is
why KorAP features a multi-component architecture com-
municating via a simple REST web interface, thus allow-
ing all services to run on different physical machines. The
system supports a web UI to allow users to conveniently
browse all available data, as well as a policy management
component to provide data entry points for restricted re-
sources. These components furthermore include a module
to serialize query information (Bański et al., 2014) as well
as two search backends that are responsible for processing
the query and for retrieving the search results. In order to
ensure sustainability, all the components are interchange-
able. The backends are based on well-proven Open Source
search technologies (Lucene/Solr and Neo4j), which sup-
port distributed searches, in this way ensuring horizontal
scalability.

5.2. Bringing the computation near the secured
data

Another fundamental aim of KorAP was to maximize the
research potential on copyright-protected texts. Given the
growing amount of textual data and annotations, as well
as the growing complexity of the relations among the data
components, traditional security measures appear to be in-
adequate for the task of protecting the integrity of the data
while at the same time allowing for fine-grained access con-
trol of selected texts and/or selected annotation layers.
KorAP implements a flexible management system to en-
compass access scenarios that have been identified in the
planning phase of the project. That system uses a separate
data store to hold security policies for resources that may
be subject to restrictions, either imposed by licence agree-
ments concerning the texts and/or the products of annota-
tion tools, or imposed by the users themselves, when they
choose to share self-defined virtual collections, potentially
containing self-created annotations.
The two backends store DRK data in index structures
for fast retrieval. Between the web client (the frontend or
the API) and KorAP only search requests and results are
transmitted. Policy management handles access to different
levels of information (raw corpus data, annotation layers,
virtual collections, etc.) and authentication based on a ses-

4

Figure 3: In the provision and use of corpora, the collision of the basic rights: freedom of science and research, and
guarantee of property, in practice, boils down to a balance of interests between researchers and rights holders.

Figure 4: KorAP exposes corpus data for external tools un-
der the control of access policies

sion model (as an intermediate layer between the API entry
point and the corpus data).
In addition to standard API access, work is planned on mak-
ing it possible to create sandboxed environments to support
non-remote-API access ”near the data”, to allow direct ac-
cess on license protected data and, in general, to provide
access to big data without causing unnecessary, if not im-
possible, network traffic.

6. Conclusions

Written language corpora have been compiled in “big data”
dimensions at the IDS since its inception in 1964, and due

to the need of curating, storing, annotating, administrat-
ing, publishing, and querying them, their continuous ex-
pansion has necessarily always been accompanied by pio-
neering research in the areas of corpus linguistics method-
ology and corpus technology. The German Reference Cor-
pus DRK, as the IDS written corpora collection has been
called since the beginning of the millennium, has reached
the size of 24 billion word tokens or 30 TB (including lin-
guistic annotations) in 2014, due to the constant influx of
text data according to previous license agreements as well
as recent acquisitions. Given these dimensions, the scal-
ability capacity of the present corpus management system
COSMAS II, which was designed already at the beginning
of the 90s, has reached its limits, and a new system called
KorAP has been created to ensure continual access to the
IDS data.
KorAP aims at horizontal scalability to support an arbi-
trary number of tokens provided with an arbitrary number
of annotation layers. To maximize the research potential on
copyright protected texts, it will provide a non-remote API
for user-supplied mobile applications.

7. References
al Wadi, D. (1994). COSMAS - Ein Computersystem für den

Zugriff auf Textkorpora. Institut für Deutsche Sprache.

Bański, P., Diewald, N., Hanl, M., Kupietz, M., and Witt,
A. (2014). Access Control by Query Rewriting: the

5

Case of KorAP. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’14). European Language Resources Associ-
ation (ELRA).

Bański, P., Fischer, P. M., Frick, E., Ketzan, E., Kupietz,
M., Schnober, C., Schonefeld, O., and Witt, A. (2012).
The New IDS Corpus Analysis Platform: Challenges and
Prospects. In Calzolari, N., Choukri, K., Declerck, T.,
Doğan, M. U., Maegaard, B., Mariani, J., Odijk, J., and
Piperidis, S., editors, Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’12), Istanbul. European Language Resources
Association (ELRA).

Bański, P., Frick, E., Hanl, M., Kupietz, M., Schnober,
C., and Witt, A. (2013). Robust corpus architec-
ture: a new look at virtual collections and data ac-
cess. In Hardie, A. and Love, R., editors, Corpus Lin-
guistics 2013 Abstract Book, pages 23–25, Lancaster.
UCREL. http://ucrel.lancs.ac.uk/cl2013/doc/
CL2013-ABSTRACT-BOOK.pdf.

Belica, C., Kupietz, M., Lüngen, H., and Witt, A. (2011).
The morphosyntactic annotation of DRK: Interpre-
tation, opportunities and pitfalls. In Konopka, M.,
Kubczak, J., Mair, C., Šticha, F., and Wassner, U., ed-
itors, Selected contributions from the conference Gram-
mar and Corpora 2009, pages 451–471, Tübingen.
Gunter Narr Verlag.

Bodmer Mory, F. (2014). Mit COSMAS II »in den Weiten
der IDS-Korpora unterwegs«. In Steinle, M. and Berens,
F. J., editors, Ansichten und Einsichten. 50 Jahre In-
stitut für Deutsche Sprache, page 376–385. Institut für
Deutsche Sprache, Mannheim.

Bubenhofer, N., Haupt, S., and Schwinn, H. (2011). A
comparable Wikipedia corpus: From Wiki syntax to
POS Tagged XML. In Hedeland, H., Schmidt, T., and
Wörner, K., editors, Multilingual Resources and Multi-
lingual Applications. Proceedings of the Conference of
the German Society for Computational Linguistics and
Language Technology (GSCL), volume 96B of Working
Papers in Multilingualism, pages 141–144, Hamburg.
Hamburg University.

Fankhauser, P., Fiedler, N., and Witt, A. (2013).
Forschungsdatenmanagement in den Geisteswis-
senschaften am Beispiel der germanistischen Linguistik.
Zeitschrift für Bibliothekswesen und Bibliographie
(ZfBB), 60(6):296–306.

Gray, J. (2003). Distributed Computing Economics. Tech-
nical Report MSR-TR-2003-24, Microsoft Research.

Hellmann, M. W., editor (1984). Ost-West-
Wortschatzvergleiche. Maschinell gestützte Unter-
suchungen zum Vokabular von Zeitungstexten aus der
BRD und der DDR, volume 48 of Forschungsberichte
des Instituts für deutsche Sprache. Narr, Tübingen.

Kamocki, P. (2013). Legal Issues: A checklist for data prac-
titioners. Talk given at the EUDAT Workshop on DARUP
on 2013-09-23 in Barcelona.

Ketzan, E. and Kamocki, P. (2012). CLARIN-D: Legal and
Ethical Issues. Talk given at the Universität des Saarlan-
des, 2012-03-28.

Kilgarriff, A. (2001). Comparing corpora. Interna-
tional Journal of Corpus Linguistics, 6(1):97–133.
http://www.kilgarriff.co.uk/Publications/
2001-K-CompCorpIJCL.pdf.

Kupietz, M. (2005). Near-Duplicate Detection in the
IDS Corpora of Written German. Technical Report kt-
2006-01, Institut für Deutsche Sprache. ftp://ftp.
ids-mannheim.de/kt/ids-kt-2006-01.pdf.

Kupietz, M. (2009). 45 years of walking the tightrope. Talk
given at the D-SPIN/CLARIN-workshop on legal issues
2009-09-21 in Berlin.

Kupietz, M. (2010). Legal and Ethical Issues with respect
to LRT and e-infrastructures. Talk given at the D-SPIN
Scientific Board Meeting on 2010-12-10 in Berlin.

Kupietz, M. (2014). Der Programmbereich Korpuslinguis-
tik am IDS: Gegenwart und Zunkunft. In Steinle, M. and
Berens, F. J., editors, Ansichten und Einsichten. 50 Jahre
Institut für Deutsche Sprache, page 298–319. Institut für
Deutsche Sprache, Mannheim.

Kupietz, M., Belica, C., Keibel, H., and Witt, A. (2010).
The German Reference Corpus DRK: A Primor-
dial Sample for Linguistic Research. In Calzolari,
N., Choukri, K., Maegaard, B., Mariani, J., Odjik,
J., Piperidis, S., Rosner, M., and Tapias, D., editors,
Proceedings of the Seventh conference on International
Language Resources and Evaluation (LREC’10), page
1848–1854, Valletta, Malta. European Language Re-
sources Association (ELRA). http://www.lrec-conf.
org/proceedings/lrec2010/pdf/414_Paper.pdf
(25.5.2010).

Kupietz, M. and Lüngen, H. (2014). Recent Developments
in DRK. In Proceedings of LREC 2014. European
Language Resources Association (ELRA).

Margaretha, E. and Lüngen, H. (in preparation). Build-
ing linguistic corpora from wikipedia articles and discus-
sions.

Teubert, W. and Belica, C. (2014). Von der Linguistischen
Datenverarbeitung am IDS zur Mannheimer Schule der
Korpuslinguistik. In Steinle, M. and Berens, F. J., editors,
Ansichten und Einsichten. 50 Jahre Institut für Deutsche
Sprache, page 320–328. Institut für Deutsche Sprache,
Mannheim.

van Uytvanck, D. (2010). CLARIN Short Guide on
Virtual Collections. Technical report, CLARIN.
http://www.clarin.eu/files/virtual_
collections-CLARIN-ShortGuide.pdf.

6

Effective Corpus Virtualization

Miloš Jakubíček‡†, Adam Kilgarriff†, Pavel Rychlý‡†

‡ NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic
† Lexical Computing Ltd., Brighton, United Kingdom

jak@fi.muni.cz,adam@lexmasterclass.com,pary@fi.muni.cz

Abstract
In this paper we describe an implementation of corpus virtualization within the Manatee corpus management system. Under corpus
virtualization we understand logical manipulation with corpora or their parts grouping them into new (virtual) corpora. We discuss the
motivation for such a setup in detail and show space and time efficiency of this approach evaluated on a 11 billion word corpus of Spanish.

Keywords: corpus, corpus linguistics, virtualization, indexing, database

1. Introduction
This paper brings together two notions from widely sep-
arated areas: virtualization and corpora. Text corpora –
large collections of electronic texts – are one of the essen-
tial resources for linguistics and have a firm place within
computational linguistics and natural language processing.
They have applications in a wide range of fields, provid-
ing reliable evidence for linguists and statistical models for
engineers.
Virtualization has become one of the technology buzzwords
of the beginning millenium as more and more people were
seeking for appropriate solution for managing large scale
IT resources. They were in place and ready to be used but
often the inability to carry out reliable predictions that would
help distributing the resources among the related services
turned out to be a big problem. Using a resource is always
a commitment, within the IT field much related to money
investments and so questions like: “Does this server need 2,
4, 8 gigs of memory and the other one less, or vice versa, or
should we just buy more?” gained a lot of importance, since
the right answer led to large savings.
Since better predictions were not really available on the dy-
namic IT market, people aimed at a technological solution
that would allow them to postpone their commitments or not
to do them at all; and so we soon witnessed the take up of
virtualization starting with processor and memory virtual-
ization allowing a single physical system to host a number
of virtual ones and distribute resources among them, contin-
uning with storage virtualization and finally creating a sole
market of cloud services.
Current situation in corpus linguistics is to some extent sim-
ilar to that in IT before virtualization: for many languages
there are large text collections available (see e.g. (Jakubíček
et al., 2013a; Callan et al., 2009; Pomikálek et al., 2012))
and one has to decide how these will be organized into cor-
pora at the technical level, i.e. as independent database units
resulting from a (possibly costly, both in terms of runtime
and final space occupation) indexing procedure.
While we presume that the corpus axiom is: the bigger
the better, clearly having just a single huge corpus per lan-
guage is not always desirable for obvious practical reasons –
smaller data is always faster to process, one corpus implies
one annotation scheme which would then be very limited,
and finally one might just find himself in a situation where

the subject of studies would be a portion of the language
(possibly defined using complex constraints).
The obvious solution to this problem lying in creating sepa-
rate and independent corpora for any combination of needs
becomes less and less feasible for very large datasets. There-
fore in this paper we would like to introduce the concept of
corpus virtualization, a method allowing flexible manage-
ment of corpora into logical units, as implemented within
the Manatee corpus management system (Rychlý, 2007)
used in the Sketch Engine (Kilgarriff et al., 2004).
The structure of the paper is as follows: in the next section
we briefly describe the Manatee corpus management sys-
tem and its past approaches to corpus organization, then we
present the approach based on virtualization and its evalua-
tion on a sample dataset.

2. Manatee
Manatee (Rychlý, 2000; Rychlý, 2007) is an all-in-one cor-
pus management system specifically designed for text cor-
pora. As any database system its elementary components can
be divided into those that are used for compiling (indexing,
building) the corpus (database) index files and those that are
then used to query the corpus. Manatee uses a sophisticated
set of index files based on the well-known inverted-index
approach (Knuth, 1997) allowing complex but fast search-
ing even for complex annotations using the Corpus Query
Language (CQL, see(Jakubíček et al., 2010)).
Any reasonable indexing of text data starts with providing
an efficient string-to-number mapping of the input words
(or lemmas, or tags, etc.) as described in (Jakubíček et al.,
2013b). The resulting data structure is called a lexicon and
allows all other indices to operate on numbers, not on strings,
and therefore to be smaller and faster to use.
The corpus consists of three elementary entities: attributes
(such as word, lemma, tag), structures (sentences, para-
graphs, documents) and structure attributes (metadata on
structures, such as document ID), where for any attribute
the following indices are compiled:

• attribute text (IDs in the order of appearance in the
corpus)

• inverted index (list of positions for each ID)

• lexicon (string↔ ID mapping)

7

corpus number of
tokens

(billions)

database size
(gigabytes)

esAmTenTen11 8.7 217
esEuTenTen11 2.4 35

esTenTen11 11.1 252

Table 1: Overview of the esTenTen corpus and its parts.

Corpus parts are managed by specifying subcorpora for
a corpus, where a subcorpus is simply defined (both concep-
tually and at the technical level) as a set of corpus segments
(based e.g. on meta-data annotation). A subcorpus cannot
be used as a standalone corpus, it is always accessed only
from the main corpus. The subcorpus compilation creates
just one index file specifying the subcorpus segments and as
for query evaluation, the subcorpus serves just as a filter on
top of the full corpus indices.

3. Corpus Virtualization
A virtual corpus is defined as a set of segments from one
or more corpora. A virtual corpus therefore might be used
just for a subcorpus as well if the segments originate from
a single corpus – but in most cases this will not be the case
and a virtual corpus will rather be a supercorpus in this
respect. It uses the very same configuration setup as any
regular corpus in Manatee except that instead of specifying
input text to be processed, a definition file for virtual corpus
is given in the following simple format:

=bnc
0,1000000
10000000,11000000
=susanne
0,$
=brown
0,1000

Each line starting with an equal sign specifies a source cor-
pus to be used, otherwise lines are comma separated position
pairs denoting segments to be included into the virtual cor-
pus (where a dollar sign means last corpus position).
This definition file would describe a virtual corpus consisting
of the first and eleventh million tokens of the BNC corpus
and the whole Susanne corpus and the first 1,000 tokens
from the Brown corpus.
While the subcorpus can be seen as a very light-weight con-
cept, a virtual corpus is a heavy-weight mechanism and
virtual corpora are first-class databases – they can be ac-
cessed without any knowledge of where they come from.
Compilation of a virtual corpus consists mainly of providing
a new lexicon and mappings to all existing lexicons of the
source corpora. Apart of that only the preexisting indices
of those corpora are used for query evaluation resulting in
large storage savings while having negligible influence on
the query evaluation performance.
We demonstrate the advantages of virtual corpora as op-
posed to the regular ones on the example of the Spanish

virtual regular
space occupied 13 GB 252 GB

compilation time 3.4 hrs 30.6 hrs

Table 2: Comparison of the esTenTen being compiled as
a virtual and regular corpus.

esTenTen corpus (Kilgarriff and Renau, 2013) consisting of
two substantial parts, the esEuTenTen (European Spanish)
and esAmTenTen (American Spanish) as given in Table 1.
In Table 2 a comparison of its compilation in both variants
is provided: as a virtual corpus consisting of two regular
corpora and as a single regular corpus. As can be seen, the
virtual corpus approach achieves space savings by factor of
more than 20 and time saving by factor of more than 10.

4. Related Work
Similar approach to the management issues of large text cor-
pora has been taken within the COSMAS project focusing
on the German Reference Corpus (DEREKO, (Kupietz et
al., 2010)) where the concept of a virtual corpus suits for
selecting working texts out of the whole DEREKO corpus,
which would correspond to the subcorpus concept within
Manatee. To the authors’ best knowledge, the presented
approach is unique in that the virtualization operates on en-
tirely independent database entities and the virtualization
process creates such a database as result too.

5. Conclusions and Further work
In this paper we justified and presented a method for corpus
virtualization within the Manatee corpus management sys-
tem that is efficient in terms of both savings in compilation
time and occupied disk space while having very little foot-
print on the system performance during query evaluation.
Another exploitation of corpus virtualization currently under
development is that for effective paralellization of corpus
compilation by dividing the data into n-parts that will be
compiled separately, then joined into a virtual corpus and
this corpus will be finally devirtualized into a regular one.
All the implemented functionality belongs to the open source
part of the Manatee corpus management system released as
Manatee-open under the GPLv2 software license at
http://nlp.fi.muni.cz/trac/noske.

6. References
Callan, J., Hoy, M., Yoo, C., and Zhao, L. (2009).

Clueweb09 data set. Online presentation available at:
http://boston.lti.cs.cmu.edu/classes/
11-742/S10-TREC/TREC-Nov19-09.pdf.

Jakubíček, M., Rychlý, P., Kilgarriff, A., and McCarthy, D.
(2010). Fast Syntactic Searching in Very Large Corpora
for Many Languages. In PACLIC 24 Proceedings of the
24th Pacific Asia Conference on Language, Information
and Computation, pages 741–747, Tokyo.

Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlý, P., and
Suchomel, V. (2013a). The TenTen Corpus Family. In
7th International Corpus Linguistics Conference CL 2013,
pages 125–127, Lancaster.

8

Jakubíček, M., Šmerk, P., and Rychlý, P. (2013b). Fast
construction of a word-number index for large data. In
A. Horák, P. R., editor, RASLAN 2013 Recent Advances
in Slavonic Natural Language Processing, pages 63–67,
Brno. Tribun EU.

Kilgarriff, A. and Renau, I. (2013). esTenTen, a Vast Web
Corpus of Peninsular and American Spanish . Procedia -
Social and Behavioral Sciences , 95(0):12 – 19. Corpus
Resources for Descriptive and Applied Studies. Current
Challenges and Future Directions: Selected Papers from
the 5th International Conference on Corpus Linguistics
(CILC2013) .

Kilgarriff, A., Rychlý, P., Smrž, P., and Tugwell, D. (2004).
The Sketch Engine. In Proceedings of the Eleventh EU-
RALEX International Congress, pages 105–116, Lorient,
France. Universite de Bretagne-Sud.

Knuth, D. E. (1997). Retrieval on secondary keys. The
art of computer programming: Sorting and Searching,
3:550–567.

Kupietz, M., Belica, C., Keibel, H., and Witt, A. (2010).
The German Reference Corpus DeReKo: A Primordial
Sample for Linguistic Research. In Nicoletta Calzolari
(Conference Chair) and Khalid Choukri and Bente Mae-
gaard and Joseph Mariani and Jan Odijk and Stelios
Piperidis and Mike Rosner and Daniel Tapias, editor,
Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), pages
1848–1854, Valletta, Malta, May. European Language
Resources Association (ELRA).

Pomikálek, J., Jakubíček, M., and Rychlý, P. (2012). Build-
ing a 70 billion word corpus of English from ClueWeb.
In Nicoletta Calzolari (Conference Chair) and Khalid
Choukri and Thierry Declerck and Mehmet Uğur Doğan
and Bente Maegaard and Joseph Mariani and Jan Odijk
and Stelios Piperidis, editor, Proceedings of the Eight
International Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey, May. European
Language Resources Association (ELRA).

Rychlý, P. (2000). Korpusové manažery a jejich efektivní
implementace. PhD Thesis, Masaryk University, Brno.

Rychlý, P. (2007). Manatee/Bonito - A Modular Cor-
pus Manager. In 1st Workshop on Recent Advances in
Slavonic Natural Language Processing, pages 65–70,
Brno.

9

Top-Level Domain Crawling for Producing
Comprehensive Monolingual Corpora from the Web

Dirk Goldhahn1, Steffen Remus2, Uwe Quasthoff1, Chris Biemann2
1University of Leipzig, Leipzig, Germany

2Technische Universität Darmstadt, Darmstadt, Germany
{dgoldhahn, quasthoff}@informatik.uni-leipzig.de, {remus, biem}@cs.tu-darmstadt.de

Abstract

This paper describes crawling and corpus processing in a distributed framework. We present new tools that build upon existing tools
like Heritrix and Hadoop. Further, we propose a general workflow for harvesting, cleaning and processing web data from entire
top-level domains in order to produce high-quality monolingual corpora using the least amount of language-specific data. We
demonstrate the utility of the infrastructure by producing corpora for two under-resourced languages. Web corpus production for
targeted languages and/or domains thus becomes feasible for anyone.

Keywords: corpus creation, web crawling, map reduce, web-scale corpora

1. Introduction
With the extraordinary growth of information in the
World Wide Web, online documents increasingly
become the major source for creating high quality
corpora. Unfortunately, the development of technologies
that make the information conveniently available to the
user causes the process of crawling language data to
become even harder. That is why researchers more and
more rely on data provided by companies specialized in
crawling the web, with all limitations that go along with
this (cf. [7]).
We present an approach for creating corpora from the
web with only little effort and by using only freely
available, open-source software. All components used
for data processing can be executed in a highly
distributed environment, resulting in quick processing
times. Researchers, data analysts and others are hence
able to create large-scale high quality corpora targeted
towards their own needs. In a case study, we will create
two corpora for under-resourced languages, Kiswahili
and Faroese. We discuss potential pitfalls, and ways to
avoid them.
While there has been a number of initiatives in the past
to obtain very large monolingual web corpora, for
example WaCky 1 [1], COW 2 [11], Leipzig Corpora
Collection [10], or even the very comprehensive common
crawl3 provided by Amazon, our contribution lies a) in
the comprehensiveness for low-resource languages
reached with minimal effort by crawling entire top-level
domains, b) in the generic distributed processing pipeline
for arbitrary automatic annotations and c) in the
availability of the entire processing chain as open-source
software component – partially provided by us.
The article is structured as follows: Section 2 describes
the proposed approach to crawling and pre-filtering of
entire top-level domains. Section 3 presents a generic
distributed processing pipeline, which allows us to

1http://wacky.sslmit.unibo.it/
2
http://hpsg.fu-berlin.de/cow/

3
http://commoncrawl.org/

process very large amounts of data, and Section 4 gives
detailed information regarding the availability of the
presented tools and the gathered data during the case
study described in Section 5. Section 6 summarizes and
concludes this work.

2. Crawling
For crawling, we rely on the Heritrix project4 (Version
3.1.1). The Heritrix archival crawler project is an
open-source, web-scale crawler made available by the
Internet Archive Community. It is used e.g. for
periodically creating snapshots of large amounts of
webpages in the web, which corresponds to the scheme
of creating corpora from the web. Heritrix is a versatile
tool, providing many options to configure the desired
crawling behavior. Compared with other crawling
software like wget, HTTrack, or Nutch, it offers several
general advantages: Single crawl jobs can cover
hundreds of millions of pages; it is stable, fast and
follows more links than other comparable tools due to
better handling of Java-script links while it is still easy to
use.
Heritrix is initialized with a list of specified webpages –
called seed – from which it extracts web links to other
webpages that are subsequently downloaded and
processed accordingly. Here, we will use it to harvest
entire Top Level Domains (TLD), which means we
download every suited web document we encounter in a
particular TLD. The initially provided list of up to 2,000
seed domains for each TLD contains randomly chosen
URLs coming from previous crawls. The composition of
the seed has only minor influence on the results of the
crawling process: Typically, hubs of a TLD – i.e.
websites that contain links to a many different
websites – are reached within the first steps of the
process. We configured Heritrix to extract links from
URLs and to follow them while not leaving the current
TLD and not downloading the same URL twice or more.

4
http://crawler.archive.org

10

DocumentJob

DeduplicationJob

DeduplicationByHostJob

UTF8Job

SentenceJob

LanguageJob

SentenceExtractJob

SentenceExtractCompactJob

1. Convert

2. Filter

3. Extract

NGramCountJob

POSNGramCountJob

NGramWithPosCountJob

CooccurrenceCountJob

4. Annotate

5. Count

UIMAJob

ARC WARC Leipzig

N-grams

POS n-grams

N-grams with
POS tags

Cooccurrences

Figure 1: The individual jobs in the standard WebCorpus pipeline. Figure taken from [3].

Running on a machine with 8 CPU-cores and 20GB of
RAM using an unthrottled 1GBit/s Internet connection, it
reaches crawling speeds of up to 200 URLs/s for each
crawling job while running up to 3 jobs in parallel. We
chose to reduce load for single servers by limiting
queries to the same domain to one per seven seconds.
Hence, high crawling speed is only achieved as long as
many servers are queued. To increase crawling
performance, some basic configurations were considered:
In order to avoid link farms and spider traps, we follow
links only up to a maximum depth. To reduce download
bandwidth we exclude certain kinds of files like images,
media files, compressed archives or executable files.
Additionally, URLs containing certain keywords
(download, files, image, pics, upload, redir or search)
are excluded from consideration. Further, we restrict the
maximum file size to 1 MB to reduce the amount of lists
or computer-generated content.
Heritrix creates output files in the Web Archive file
format (WARC)5. The WARC file format specifies how
to combine multiple digital resources with
meta-information into a single file for long term
archiving or distribution. Further processing steps
proposed in this work operate on this representation.

3. Processing and Analyzing Web-Data
Post-processing of harvested web data can be efficiently
performed using the WebCorpus6 project. WebCorpus
makes use of the highly efficient Hadoop7 framework,
which offers the execution of algorithms following the
MapReduce programming paradigm [6] in a distributed
environment. Due to the choice of Hadoop as the basis
framework it is possible to process very large data in
parallel by a number of computers or just by a single
machine. The core idea in MapReduce is to split an
algorithm into two phases: map and reduce. In the map
phase, so-called key-value pairs of the input data are
produced which are subsequently grouped and combined
in the reduce phase by their key to produce the final
result. In terms of Hadoop, an algorithm following the

5
http://www.digitalpreservation.gov/formats/fdd/
fdd000236.shtml
6http://sf.net/projects/webcorpus
7http://hadoop.apache.org

MapReduce programming principle is called a
HadoopJob. The WebCorpus project provides individual
HadoopJobs, which are designed to process the data in a
pipeline fashion, i.e. one HadoopJob after another.
The general steps of the processing pipeline are
described by:

1. Convert: converting input data – currently
supported input file formats are WARC, ARC8
and Leipzig Corpora Collection [10] – into a
unified document representation, thereby
optionally removing html boilerplate text (cf.
e.g. [8]),

2. Filter: removing duplicate, broken or pointless
documents,

3. Extract: segmenting, filtering and merging
texts in the desired level of granularity – e.g.
unique sentences, paragraphs or documents in a
particular language,

4. Annotate: process texts with UIMA 9
components, e.g. tokenizing, tagging, etc., and
parsing

5. Count: exploit the resulting annotations by
counting n-grams, co-occurrences, subtrees of
dependency parses, etc. in the annotated texts.

Figure 1 shows a more detailed overview of the different
HadoopJobs in the respective phases. For a description
of the individual jobs the reader is referred to [3].
Some of the jobs, in particular the LanguageJob and
partially also the SentenceJob and the UIMAJob, are
language dependent. For example, the LanguageJob uses
the language identification package (JLanI) from the
ASV-Toolbox10 [4], which relies on a precomputed list
of high-frequency words for a particular language. These
word lists are available for more than 500 languages
using mainly Wikipedias, the Universal Declaration of
Human Rights and religious texts. More languages could

8 Internet Archive file format
http://www.digitalpreservation.gov/formats/fdd/
fdd000235.shtml
9 http://uima.apache.org
10
http://wortschatz.uni-leipzig.de/~cbiemann/sof

tware/toolbox/

11

be included on the basis of Bible texts (cf. [5]).
Likewise, the SentenceJob11 uses handcrafted sentence
breaking rules to segment sentences. While it is equipped
with a generic rule set, more specific rules for a
particular language will certainly improve the results, but
were not considered for the case study in this work for
the sake of generality.
Processing 10 GB of web data took around one hour on
our compute cluster consisting of eight nodes with eight
cores each. The runtime complexity solely depends on
the amount of input data and the number of provided
machines [1].
The cleaned, language-filtered and preprocessed
documents, as well as the various outputs of the count
phases like statistically significant co-occurrences or
n-grams can then be exploited by a variety of
applications, e.g. distributional thesauri or language
models (cf. e.g. [2]). In this work, we will exemplify the
data with visual analysis of significant co-occurrences
using CoocViewer 12 [9]. With CoocViewer,
co-occurrences of words from multiple arbitrary text
corpora can be explored visually in a user-friendly way,
providing also access to the source text via full-text
indexing. The application itself is divided into two major
components:

1. the server-sided data management part, where
data is stored in a relational database for fast
access through indexes (cf. [10]), and

2. the web based front end, which runs on top of
an http server 13 . The browser based client
application is thus independent of the
underlying operating system and available for
many users accordingly.

Screenshots of the application follow in Section 4 where
we show the feasibility of processing web-data based on
two sample web crawls. As a key characteristic,
CoocViewer also comes with the possibility to visualize
significant concordances. This feature is particularly
useful for analyzing high frequency words.

4. Availability
Corpora as described in the following case study are
made available in various ways. On the one hand the full
size corpora are accessible online using the web interface
of the Leipzig Corpora Collection14. On the other hand
the textual data can be downloaded15. For download
corpora of standard sizes of up to 1 million sentences are
provided. They can be viewed locally using e.g. the Java
Corpus Browser [10]. All textual data underlies creative
commons attribution license (cc by)16 allowing users to

11 The SentenceJob internally uses the ASV-Toolbox.
12 http://coocviewer.sf.net
13 Any webserver that supports PHP.
14 http://corpora.informatik.uni-leipzig.de
15
http://corpora.informatik.uni-leipzig.de/downl

oad.html
16
https://creativecommons.org/licenses/by/3.0/

use and modify the data freely.
The collected sentences are shuffled such that the
original structure of the documents cannot be recovered
easily, because of legal issues. This inhibits the
reconstruction of the original material. With respect to
German copyright legislation this practice is considered
legally secured, since there is no copyright on single
sentences.
The various pre-processing tools involved in the creation
of corpora as described are free to use. Among these are
tools for HTML-Stripping, sentence segmentation,
sentence cleaning, and language identification 17 . All
tools can be utilized for non-commercial users following
creative commons attribution-noncommercial license (cc
by-nc)18. The WebCorpus and the CoocViewer toolkits
are available as open-source components in Java under
the Apache v2 License19.

5. Case Study
For our case study, two top-level-domains were crawled,
from which we assume that they contain documents of
languages that are known to be under-resourced. We
tested the .fo domain (Faeroe Islands) and the .ke domain
(Kenya), where the languages of interest are Faroese and
Kiswahili respectively. Kiswahili is also spoken in other
countries such as Tanzania, which could be collected by
crawling their respective TLDs. Both domains were
crawled using the Heritrix-based crawler, resulting in 1.2
million websites for .fo and 3.1 million websites for .ke.
Crawling took about three days for Faroe Islands and
four days for Kenya resulting in an average speed of 9
resp. 5 URLs per second. Due to self-imposed politeness
restrictions, a maximum download speed of about 200
URLs/s was only reached at the beginning of the
crawling process. Higher average rates could easily be
achieved by lifting query limits for the cost of being less
polite to web server operators.
When conducting language separation, fundamentally
different compositions of the domains in question
become obvious. More than 60% of the documents of
the .fo TLD are written in Faroese, as can be seen in
Table 1. English is the second largest language having a
15% share. Next in the ranking are further North
Germanic languages, namely Icelandic and Danish.

17
http://asvdoku.informatik.uni-leipzig.de/corpo

ra/index.php?id=corpus-pre-processing-tools
18
http://creativecommons.org/licenses/by-nc/3.0/

19
http://www.apache.org/licenses/LICENSE-2.0

Table1: Results of language separation using
websites of the Faroese domain.

 Language Percentage
 Faroese 60.63
 English 14.69
 Icelandic 11.24
 Danish 10.29
 French 0.64

12

When analyzing the Kenyan TLD, an extremely high
percentage value for English documents becomes evident
(Table 2). Although it is the second largest language
among .ke documents, only 0.84% of all texts contain
Kiswahili. Together, these two form the national
languages of Kenya.

The WebCorpus framework was applied as described in
Section 3. Only Faroese respectively Kiswahili texts
were considered, texts from other languages were filtered
in the Filter phase of the WebCorpus pipeline (cf. Sec. 3).
Further, we defined our unit of granularity to be the
sentence level since our example application is the
analysis of co-occurrences of words on a sentence level.
After applying the entire WebCorpus pipeline as
described in Section 3, we have 7,873 unique sentences
and 31,274 types for Kiswahili, and 888,255 unique
sentences and 1,030,611 types for Faroese. Yet, the lack
of a profound knowledge of these languages makes it
impossible for us to judge the quality of the extracted
sentences. In particular, the very high number of
sentences and tokens for Faroese suggests unclear
boundaries in the language separation step. Indeed,
during manual inspection of the dataset, we observed
some false-positive Danish sentences.
Figure 2 shows the co-occurrences and significant
concordances of selected words from either corpus. As
should become evident, the setup we described is suited
for studies in corpus linguistics and other research.

6. Conclusion
Free and open-source software components have been
made available by us and others, that allow researchers
and others to produce high quality web corpora targeted
to their own needs without relying on the good will of
commercial companies to provide it. We have exercised
one possible workflow for producing such corpora for
two under-resourced languages and conclude, that
although we are lacking the needed knowledge for these
languages, we are able to produce reasonable results. We
assume that further processing of these corpora by
experts – mainly cleaning of artefacts from different
languages, false segmentation, etc. – would result in high
quality corpora from the web. Everybody is thus able to
produce web corpora using just the few steps outlined
above, and by relying solely on freely available software.
By applying some simple configuration settings for
Heritrix, the open-source crawler of the Internet Archive,
it is easy to crawl specified regions of the World Wide
Web in order to collect usable text. By making use of the
Hadoop framework, the user herself chooses the level of
scalability. Even a single computer is able to run the
provided workflow, but when providing more machines,
users are able to create corpora of very large sizes in
reasonable time.
In two case studies, we have demonstrated how to collect
corpora for rather under-resourced languages. Still, the
proposed approach can be applied to larger languages if
enough computational resources are available. These
corpora can form the basis to compute language models,
and other NLP components trained from unannotated
text.

7. References
[1] Marco Baroni, Silvia Bernardini, Adriano Ferraresi and

Eros Zanchetta. 2009. The WaCky Wide Web: A Collection
of Very Large Linguistically Processed Web-Crawled
Corpora. Language Resources and Evaluation 43 (3):
209-226.

[2] Thorsten Brants, Alex Franz (2006): Web 1T 5-gram

Figure 2: Significant co-occurrences and concordances with the word ‘ya’ (engl. pendant is roughly ‘of’, frequency
10,531) from the Kiswahili corpus (upper) and with the word ‘vatn’ (engl. ‘water’, frequency 1,504) from the

Faroese corpus (lower). Thicker lines represent more significant relations.

Table2: Results of language separation using websites
of the Kenyan domain.

 Language Percentage
 English 98.20
 Kiswahili 0.84
 Russian 0.21
 Latin 0.12
 Spanish 0.08

13

Version 1. LDC, Philadelphia, PA, USA
[3] Chris Biemann, Felix Bildhauer, Stefan Evert, Dirk

Goldhahn, Uwe Quasthoff, Roland Schäfer, Johannes Simon,
Leonard Swiezinski, Torsten Zesch. 2013. Scalable
Construction of High-Quality Web Corpora. Journal for
Language Technology and Computational Linguistics
(JLCL), 28(2), pp. 23–59.

[4] Chris Biemann, Uwe Quasthoff, Gerhard Heyer, and
Florian Holz. 2008. ASV Toolbox – A Modular Collection
of Language Exploration Tools. In Proc. of LREC 2008,
Marrakech, Marocco

[5] Michael Cysouw. 2009. Using the World Atlas of Language
Structures. In STUF - Language Typology and Universals
Sprachtypologie und Universalienforschung. 61(3):
181–185. Akademie Verlag, Berlin

[6] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified Data Processing on Large Clusters. In Proc. of
the 6th Symposium on OSDI. San Francicso, CA, USA

[7] Adam Kilgarriff. 2007. Googleology is Bad Science.
Computational Linguistics. 33(1): 147–151.

[8] Christian Kohlschütter, Peter Fankhauser and Wolfgang
Nejdl. 2010. Boilerplate Detection using Shallow Text
Features. In Proc. of WSDM, New York City, NY, USA

[9] Janneke Rauscher, Leonhard Swiezinski, Martin Riedl and
Chris Biemann. 2013. Exploring Cities in Crime: Significant
Concordance and Co-occurrence in Quantitative Literary
Analysis. In Proc. of the Computational Linguistics for
Literature Workshop at NAACL-HLT 2013, Atlanta, GA,
USA

[10] Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir,
and Chris Biemann. 2006. Exploiting the Leipzig corpora
collection. In Proc. of the IS-LTC. Ljubljana, Slovenia.

[11] Roland Schäfer and Felix Bildhauer. 2012. Building large
corpora from the web using a new efficient tool chain. In
Proc. of LREC 2012, Istanbul, Turkey

14

Making a large treebank searchable online. The SoNaR case.

Vincent Vandeghinste, Liesbeth Augustinus
Centre for Computational Linguistics, KU Leuven

Leuven
Email: vincent@ccl.kuleuven.be, liesbeth@ccl.kuleuven.be

Abstract

We describe our efforts to scale up a syntactic search engine from a 1 million word treebank of written Dutch text to a treebank of 500
million words, without increasing the query time by a factor of 500. This is not a trivial task. We have adapted the architecture of the
database in order to allow querying the syntactic annotation layer of the SoNaR corpus in reasonable time. We reduce the search space by
splitting the data in many small databases, which each link similar syntactic patterns with sentence identifiers. By knowing on which
databases we have to apply the XPath query we aim to reduce the query times.

Keywords: corpus indexing, treebanks, search engine

1. Introduction
The research described in this work mainly concerns how
to scale up syntactic search from a 1 million word treebank
to a 500 million word treebank. In the Nederbooms project
Augustinus et al. (2012) made the LASSY Small treebank
(van Noord et al., 2013) available for online querying using
GrETEL.1 LASSY Small consists of 1 million words which
have been syntactically annotated using the Alpino parser
(van Noord, 2006), and which have been manually
corrected.
The SoNaR corpus (Oostdijk et al., 2013) is a balanced
corpus of written Dutch that consists of 500 million words,
which are fully automatically tokenized, POS-tagged,
lemmatized, and syntactically analysed (van Noord et al.,
2013), using the Alpino parser.
Scaling up the treebank from a 1 million word corpus to a
500 million word corpus is not a trivial task. This paper
describes the new architecture we had to adopt in order to
allow querying the syntactic annotation of the SoNaR
corpus in reasonable time.
In section 2 we describe some related work as well as our
motivation to use XPath as a query language for the
LASSY and SoNaR treebanks. In section 3 we describe the
GrETEL 1.0 approach which we use for querying small
treebanks. In section 4, we describe scaling up the GrETEL
database architecture for very large treebanks. In section 5,
the GrETEL 2.0 search engine is presented. Section 6
concludes and describes future work

2. Treebank Querying
Currently there exist many linguistic treebanks and almost
as many query languages and treebanking tools to explore
those treebanks.
The Penn Treebank (Marcus et al., 1993) should be queried
with TGrep2 (Rohde, 2005) via a command-line interface,

1 Greedy Extraction of Trees for Empirical Linguistics,
http://nederbooms.ccl.kuleuven.be/eng/gretel

the Prague Dependency Treebank (Hajič et al., 2006) can
be queried through Netgraph (Mírovský, 2008), a
client-server application. Several treebanking tools support
(extensions of) the TIGER query language (König and
Lezius, 2003), such as the standalone tool TIGERSearch
(Lezius, 2002), or the online query engines TüNDRA
(Martens, 2012; 2013) and INESS-Search (Meurer, 2012).
For a comparison of some existing query languages, see Lai
and Bird (2004).

In both LASSY Small and SoNaR the syntactic structures
are represented in XML format, which can be visualised
using the appropriate style sheet.2 Each XML tree structure
is isomorphous to the dependency tree of the syntactic
annotation layer. This is not the case for XML
representations of syntax trees in Tiger-XML format (König
et al., 2003) or FoLiA format (Van Gompel and Reynaert,
2014), in which trees are represented as sets of nodes and
links between those nodes. The use of isomorphous XML
allows to query for syntactic structures using W3C standard
tools such as XPath3 and XQuery,4 as explained in van
Noord et al. (2013).

DTSearch (Bouma and Kloosterman 2002; 2007) and
DACT5 are two standalone tools for querying syntactic
trees in Alpino-XML format using XPath. Since XPath is a
standard query language and is already supported in the
standalone tools for querying Dutch treebanks, we use it as
a query language in GrETEL as well, as explained in more
detail in section 3.

2 You can try this at http://www.let.rug.nl/vannoord/bin/alpino
or http://nederbooms.ccl.kuleuven.be/eng/alpino.

3 http://www.w3.org/TR/xpath/
4 http://www.w3.org/TR/xquery/
5 http ://rug-compling.github.io/dact/

15

This avoids the common complaint of users having to learn
yet another query language. Van Noord et al. (2013) show
how the queries presented in Lai and Bird (2004) can be
translated to the Dutch grammar and fairly easily
converted into XPath.

In order to support (non-technical) users that are reluctant
towards learning any query language at all, we also
implemented example-based search, a query system that
does not ask for any formal input query. Tools related to
that approach are the Linguist's Search Engine (Resnik and
Elkiss, 2005), another example-based query engine (which
is no longer available) and the TIGER Corpus Navigator
(Hellman et al., 2010), a SemanticWeb system that
classifies and retrieves corpus sentences based on abstract
linguistic concepts.
The system we present here is an online system, which
shares the advantages of tools like TüNDRA and
INESS-Search: They are platform independent and no local
installation of the treebanks is needed. This is especially
attractive for (very) large parsed corpora which require a lot
of disk space.

3. GrETEL 1.0 (Lassy small)
Figure 1 presents the architecture of the GrETEL search
engine. The user has two ways of entering a syntactic
query.
The first approach, indicated by (1) in Figure 1, is called
Example-based Querying (Augustinus et al., 2012; 2013)

which consists of a query procedure in several steps. The
user provides an example sentence, containing the syntactic
construction (s)he is querying. The input sentence is
automatically syntactically analysed using the Alpino
parser. In the Sentence Parts Selection Matrix, the user
indicates which part of the entered example (s)he is actually
looking for. The Subtree Finder extracts the query tree from
the full parse tree. The XPath Generator automatically
converts the query tree into an XPath expression. The
XPath query is then used to search the treebank stored in
the BaseX database system (Holupirek and Scholl, 2008),
which is a native XML database system optimised for
XQuery and XPath performance.6 For example, if one is
looking for constructions containing the adverbial phrase
lang niet altijd “not always”, a possible input example is
the construction Het is lang niet altijd gemakkelijk “It is far
from easy”. After indicating the relevant parts of the input
construction, GrETEL extracts the subtree in Figure 2, and
turns it into the XPath expression in Figure 3.

6 http://basex.org/

Figure 1: GrETEL architecture

16

Example-based querying has the advantage that the user
does not need to be familiar with XPath, nor with the exact
syntactic sugar of the XML in which the trees are
represented, nor with the exact grammar implementation
that is used by the parser or the annotators. Nevertheless,
XPath querying greatly enhances the query flexibility
compared to the example-based approach.

Therefore, the second approach, indicated by (2) in Figure
1, consists of directly formulating an XPath query
describing the syntactic pattern the user is looking for. This
query is then processed in the same way as the
automatically generated query in the first approach.
The online query engine is fast, but if one is looking for
rare constructions, little or no results are found since the
size of the treebank is rather small. We want to overcome
this problem by including the large SoNaR corpus, but this
introduces another challenge: Making such a large treebank
searchable in reasonable-time, in order to implement it for
online querying.

4. GrInding the data per breadth-first pattern
The general idea behind our approach is to restrict the
search space by splitting up the data in many small
databases, allowing for faster retrieval of syntactic
structures. We organise the data in databases that contain all
bottom-up subtrees for which the two top levels (i.e. the
root and its children) adhere to the same syntactic pattern.
When querying the database for certain syntactic
constructions, we know on which databases we have to
apply the XPath query which would otherwise have to be
applied on the whole data set. We have called this method
GrETEL Indexing (GrInd).
As an example, take the parse tree presented in Figure 4.

In a top-down fashion, we take for each node all the
bottom-up subtrees, i.e. all the subtrees that have only
lexical elements as their terminals.7 For instance, taking the
example parse tree from Figure 4, for the |smain node,
we extracted the subtree with three daughters shown in
Figure 5a, with two daughters in Figure 5b and with only
one daughter in Figure 5c.
This procedure is applied recursively for each node in the
parse tree. For every extracted subtree, we convert the
children of the root into a string-based breadth-first pattern,
inspired by Chi et al. (2005) and taken over from
Vandeghinste and Martens (2010).8 As the trees are
dependency trees, the order of children is not important.
Therefore, the children in the breadth-first representation
are sorted in a canonical alphabetical order. Note also that
the POS tags included in the trees contain more detailed
information such as gender, number and agreement. In the
breadth-first strings, only the general POS tag is used. For
the subtrees in Figure 5, this amounts to the following
breadth-first patterns respectively:

hd%ww_predc%ap_su%vnw
hd%ww_su%vnw
su%vnw_predc%ap
predc%ap_hd%ww
su%vnw
hd%ww
predc%ap

Those breadth-first patterns are combined with the category
label of their root (in this case smain). To the file with that
name we copy the XML of the subtree, adding the sentence
identifiers indicating where these subtrees come from.
We organise these breadth-first files per corpus
component.9

7 This definition differs from the definition of bottom-up subtrees
used in Vandeghinste et al. (2013) in the sense that in this case,
they do not have to be horizontally complete.

8 Opposed to Vandeghinste and Martens (2010) only the children
of the root are converted into breadth-first patterns.

9 SoNaR contains 25 components, each containing a different
text genre.

Figure 2: An example bottom-up subtree.

Figure 3: XPath based on Figure 2

//node[@cat="advp" and node[@rel="mod"
and @cat="advp" and node[@rel="mod" and
@pt="bw" and @lemma="lang"] and
node[@rel="hd" and @pt="bw" and
@lemma="niet"]] and node[@rel="hd" and
@pt="bw" and @lemma="altijd"]]

Figure 4: An example parse tree

17

For example, in the WR-P-E-F component10 of SoNaR, we
have extracted all adverbial phrases that have as children an
adverbial phrase (advp) as a modifier (mod) and an adverb
(bw) as a head (hd), and put them in the following XML
file WRPEFadvphd%bw_mod%advp.xml. The XML
structure in Figure 6 corresponds to the subtree in Figure 2.

10The WR-P-E-F component contains press releases.

By extracting all the bottom-up subtrees from a given parse
tree, and copying them to the files with the appropriate
breadth-first filename, higher-level subtrees contain copies
of lower level subtrees, and the size of the data grows
considerably. In order to avoid copying the information
from horizontally complete subtree patterns to the
horizontally incomplete variants, we use <include> tags,
indicating in which other files the queried pattern might
occur as well. More general patterns are included in more
specific patterns.
For instance, when looking for adverbial phrases (advp)
that have a modifying adverbial phrase (mod|advp) as
daughter, one should also look for this pattern in the file
that contains the adverbial phrases that have a modifying
adverbial phrase AND a head adverb (hd|bw) as daughters,
resulting in a file WRPEF/advp/bfmod%advp.xml
with the following data:

When a subtree is found that matches the XPath query, we
retrieve the sentence identifier, as indicated by the id
feature in the <tree> tag, as shown in Figure 6, and

Figure 5: Bottom-up subtrees of the smain node in Figure 4

a)

b)

c)

Figure 7: XML of a subtree that is included in another database

<treebank component="WRPEF" cat="advp" file="mod
%advp">
 <include file="WRPEFadvpmod%advp_hd%bw" />
</treebank>

Figure 6: XML containing a subtree

<treebank component="WRPEF" cat="advp" file="hd
%bw_mod%advp">
 <tree id="WRPEF0000000769.p.4.s.7" >
 <node begin="3" cat="advp" end="6" id="6"
rel="mod">
 <node begin="3" cat="advp" end="5" id="7"
rel="mod">
 <node begin="3" buiging="zonder" end="4"
frame="adverb" graad="basis" id="8" lcat="advp"
lemma="lang" pos="adv" positie="vrij"
postag="ADJ(vrij,basis,zonder)" pt="adj"
rel="mod" root="lang" sense="lang" word="lang"/>
 <node begin="4" end="5" frame="adverb" id="9"
lcat="advp" lemma="niet" pos="adv" postag="BW()"
pt="bw" rel="hd" root="niet" sense="niet"
word="niet"/>
 </node>
 <node begin="5" end="6" frame="adverb" id="10"
lcat="advp" lemma="altijd" pos="adv"
postag="BW()" pt="bw" rel="hd" root="altijd"
sense="altijd" word="altijd"/>
 </node>
 </tree>
</treebank>

18

display the full sentence and optionally the full parse tree as
retrieved from the original treebank.

5. Querying the data (GrETEL 2.0)
Similar to the query engine for Lassy small, we use BaseX
(Holupirek and Scholl, 2008), a native XML database
system, as an XPath query engine for SoNaR. We have
created over 10 million databases in BaseX, each with a
name that is indicative of the components and patterns that
are described therein. GrInd allows us to query SoNaR in a
faster and more efficient way, whereas earlier attempts to
query the corpus resulted in memory issues.
However, some queries still take too long for online
searching, which caused a browser time-out. Therefore, the
current system outputs a sample of the results and their
frequency during the first n seconds of querying.11 By
caching the queries and the results we avoid querying the
same construction multiple times, and it allows us to return
the final results immediately.
In the next version we plan to implement a messaging
system which notifies when the user can find the results
once the search action is completed.
As described in section 3 we have two ways of feeding
queries to the syntactic search engine: Through an example
and through an XPath expression. The first version of the
online search engine for SoNaR only allows the
example-based querying method.
When we are querying via an example (query method 1 in
Figure 1), the search engine extracts a bottom-up query
subtree from the parse tree of the (natural language) input
example. When we are querying the treebank looking for
this bottom-up subtree, we know in which BaseX database
we have to look, as we can construct the name of the
database based on the query subtree. As described in the
previous section, the database name depends on the
syntactic category of the root and on the syntactic
categories and dependency relations of the children of the
root. It is only in trees in this database that the query
subtree can occur, and therefore we do not need to look in
the rest of the treebank. The query subtree is also
automatically converted into XPath, and it is this XPath
expression that is used as a query in the relevant databases.
When we are querying with an XPath expression (query
method 2 in Figure 1), there is no subtree that can be used
to retrieve the relevant databases. Instead, we have to
extract the largest bottom-up subtree that complies with the
XPath expression in order to determine where to look for
the relevant patterns. This is not a trivial process, as XPath
can contain conjunctions (AND), optionality (OR), and
negation (NOT), defining multiple query trees in one query,
not necessarily with the same root category label and the
same children of the root, and hence not necessarily in the
same database. Solving this issue remains future work.

11 Currently, n is set to 60 seconds, but parametrisable.

6. Conclusions and future work
We have described how we have organised the data of a
very large treebank of written Dutch in order to search
syntactic constructions within reasonable query times.
When the user is interested in frequencies of syntactic
patterns, query times will be longer, as all the relevant
databases from all the relevant components need to be
queried. Nevertheless we are not aware of any other
approach towards large treebank querying that allows faster
querying.

The work described in this paper is still in progress. We still
have to implement extracting the largest bottom-up tree
complying with an XPath expression, which is a non-trivial
task, as XPath expressions can contain optionality and
negation. As already mentioned, we will include a
messaging system to work around excessive query times,
which we still occasionally expect. Finally, we also plan to
apply this architecture to treebanks for Afrikaans and
English, increasing the coverage of the GrETEL search
engine.

7. Acknowledgements
The research presented in this paper is part of GrETEL 2.0,
a project on the adaption of the GrETEL search engine
for querying very large treebanks, sponsored by
CLARIN-NTU.

8. References
Liesbeth Augustinus, Vincent Vandeghinste, Ineke

Schuurman, and Frank Van Eynde (2013).
Example-Based Treebank Querying with GrETEL – now
also for Spoken Dutch. In Proceedings of the 19th
Nordic Conference on Computational Linguistics
(NoDaLiDa 2013). NEALT Proceedings Series 16. Oslo,
Norway. pp. 423-428.

Liesbeth Augustinus, Vincent Vandeghinste, and Frank Van
Eynde (2012). Example-Based Treebank Querying. In
Proceedings of LREC 2012. Istanbul, Turkey. pp.
3161-3167

Gosse Bouma and Geert Kloosterman (2002). Querying
Dependency Treebanks in XML. In Proceedings of
LREC’02. Las Palmas, Spain. pp. 1686–1691.

Gosse Bouma and Geert Kloosterman (2007). Mining
Syntactically Annotated Corpora with XQuery. In
Proceedings of the Linguistic Annotation Workshop.
Prague, Czech Republic. pp. 17–24.

Yun Chi, Siegfried Nijssen, Richard Muntz, and Joost Kok
(2005). Frequent Subtree Mining An Overview.
Fundamental Informatics, Special Issue on Graph and
Tree Mining. pp. 1001-1038.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr
Pajas, Jan Štěpánek, Jiří Havelka, Marie Mikulová,
Zdeněk Žabokrtský and Magda Ševčíková-Razímová

19

(2006). Prague Dependency Treebank 2.0. CD-ROM
LDC2006T01, LDC, Philadelphia.

Sebastian Hellmann, Jörg Unbehauen, Christian Chiarcos,
and Axel-Cyrille Ngonga Ngomo (2010). The TIGER
Corpus Navigator. In Proceedings of the The Ninth
Workshop on Treebanks and Linguistic Theories (TLT9).
Tartu, Estonia. pp. 91-102.

Alexander Holupirek and Marc H. Scholl (2008). An XML
Database as Filesystem in Userspace. In Proceedings of
the 20. GI Workshop on Foundations of Databases,
August 2008. School of Information Technology,
Germany. pp. 31-35.

Ester König and Wolfgang Lezius (2003). The TIGER
language - A Description Language for Syntax Graphs,
Formal Definition. Technical report. IMS, University of
Stuttgart, Germany.

Esther König, Wolfgang Lezius, and Holger Voormann
(2003). TIGERSearch User's Manual. IMS, University of
Stuttgart, Germany.

Catherine Lai and Steven Bird (2004). Querying and
updating treebanks: a critical survey and requirements
analysis. In Proceedings of the Australasian Language
Technology Workshop. Sydney, Australia. pp. 139–146.

Wolfgang Lezius (2002). TIGERSearch: ein Suchwerkzeug
für Baumbanken. In Proceedings of KONVENS-02.
Saarbrücken, Germany.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz (1993). Building a large annotated corpus
of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

Scott Martens (2012). TüNDRA: TIGERSearch-style
treebank querying as an XQuery-based web service. In
Proceedings of the joint CLARIN-D/DARIAH Workshop
“Service-oriented Architectures (SOAs) for the
Humanities: Solutions and Impacts” (DH 2012).
Hamburg. pp. 41-50.

Scott Martens (2013). TüNDRA: A Web Application for
Treebank Search and Visualization. In Proceedingsof the
The Twelfth Workshop on Treebanks and Linguistic
Theories (TLT12). Sofia, Bulgaria. pp. 133-143.

Paul Meurer (2012). INESS-Search: A search system for
LFG (and other) treebanks. In Proceedings of the
LFG’12 Conference. LFG Online Proceedings. Stanford,
CSLI Publications. pp. 404–421

Jiří Mírovský (2008). Netgraph Query Language for the
Prague Dependency Treebank 2.0. The Prague Bulletin
of Mathematical Linguistics No. 90. pp. 5–32.

Nelleke Oostdijk, Martin Reynaert, Véronique Hoste, and
Ineke Schuurman (2013). The Construction of a
500-million-word Reference Corpus of Contemporary
Written Dutch. In Peter Spyns and Jan Odijk (eds.):
Essential Speech and Language Technology for Dutch:
resources, tools and applications. Springer.

Philip Resnik and Aaron Elkiss (2005). The Linguist’s
Search Engine: An Overview. In Proceedings of the ACL

Interactive Poster and Demonstration Sessions. Ann
Arbor. pp. 33-36.

Douglas L.T. Rohde (2005). TGrep2 User Manual.
Vincent Vandeghinste, Scott Martens, Gideon Kotzé, Jörg

Tiedemann, Joachim Van Den Bogaert, Koen De Smet,
Frank Van Eynde, and Gertjan van Noord (2013). Parse
and Corpus-based Machine Translation. In Peter Spyns &
Jan Odijk (eds.): Essential Speech and Language
Technology for Dutch: resources, tools and applications.
Springer.

Vincent Vandeghinste and Scott Martens (2010). Bottom-up
transfer in Example-based Machine Translation. In
François Ivon and Viggo Hansen (eds.) In Proceedings
of the 14th International Conference of the European
Association for Machine Translation (EAMT-2010).
Saint-Raphael, France.

Maarten van Gompel and Martin Reynaert (2014). FoLiA:
A practical XML format for linguistic annotation - a
descriptive and comparative study. Computational
Linguistics in the Netherlands Journal 3:63-81.

Gertjan van Noord. 2006. At Last Parsing Is Now
Operational. In TALN 2006. pp. 20–42.

Gertjan van Noord, Gosse Bouma, Frank Van Eynde,
Daniel de Kok, Jelmer van der Linde, Ineke Schuurman,
Erik Tjong Kim Sang, and Vincent Vandeghinste (2013).
Large Scale Syntactic Annotation of Written Dutch:
Lassy. In: Peter Spyns and Jan Odijk (eds.): Essential
Speech and Language Technology for Dutch: Resources,
Tools and Applications. Springer.

20

Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort

John Vidler∗, Paul Rayson∗, Laurence Anthony†, Andrew Scott∗, John Mariani∗
∗School of Computing and Communications, Lancaster University

j.vidler, p.rayson, a.scott, j.mariani@lancaster.ac.uk
†Faculty of Science and Engineering, Waseda University

anthony@waseda.jp

Abstract
The demands placed on systems to analyse corpus data increase with input size, and the traditional approaches to processing this data
are increasingly having impractical run-times. We show that the use of desktop GPUs presents a significant opportunity to accelerate
a number of stages in the normal corpus analysis pipeline. This paper contains our exploratory work and findings into applying
high-performance computing technology and methods to the problem of sorting large numbers of concordance lines.

Keywords: Very Large Corpora, Concurrency, GPU Computing, High Performance Computing, Concordances, Sorting

1. Introduction
Corpus data is used in many areas of Digital Humanities,
Natural Language Processing, Human Language Tech-
nologies, Historical Text Mining and Corpus Linguistics.
Increasingly, however, the size of corpus data is becoming
unmanageable. In Digital Humanities, for example, na-
tional and international digitisation initiatives are bringing
huge quantities of archive material in image and full text
form direct to the historian’s desktop. Processing such data
quickly, on the other hand, will almost certainly exceed the
limits of traditional database models and desktop software
packages. Similarly, the “Web as a Corpus” paradigm
has brought vast quantities of Internet-based data to corpus
linguists. However, any search or sort of results from these
rich datasets is likely to take from minutes to hours to days
using desktop corpus tools such as WordSmith Tools1 and
AntConc2.
To address the problems of handling massive data sets,
international infrastructure projects, such as CLARIN and
DARIAH, are emerging with support for these large cor-
pora under the umbrella of ‘big data’. However, these
systems do not allow for local access, storage and retrieval
of large language resources to support researchers while
datasets are being collected and analysed. In corpus
linguistics, researchers now have access to tools such as
Sketch Engine3 and the family of BYU Corpora4, which
aim to support pre-compiled billion-word corpora. Again,
though, these systems are remotely hosted, and they are
also not easy to configure for the new datasets of local
researchers. More recently, semi-cloud based systems
are emerging, such as GATE5, Wmatrix6, and CQPweb7,
which can provide users with local access to large data
sources. However, the installation and configuration of
such systems is far from simple, making them inaccessible

1http://www.lexically.net/wordsmith/
2http://www.antlab.sci.waseda.ac.jp/

software.html
3http://www.sketchengine.co.uk/
4http://corpus.byu.edu/
5http://gate.ac.uk/
6http://ucrel.lancs.ac.uk/wmatrix/
7http://cqpweb.lancs.ac.uk/

to most social science and humanities based scholars.

Hence, there is still a need to investigate processing effi-
ciency improvements for locally controlled and installed
corpus retrieval software tools and databases. Core tasks
such as corpus indexing, calculating n-grams, creating
collocations, and sorting results on billion-word databases
cannot feasibly be carried out on current desktop computers
within a reasonable time.

In this paper, we describe an alternative solution to ac-
celerate such tasks by capitalizing on the local processing
power of the often underused discrete Graphics Processing
Unit (GPU). To highlight the possibilities of our approach,
we focus on the task of concordance results sorting and
show how GPU hardware can dramatically shorten the time
needed to complete the task. This research forms our first
case study in a larger project to investigate the untapped
potential in current operating system architecture designs.

2. Background

As corpus sizes increase, the problems of processing large
datasets are become more pressing. Research on high
performance processing techniques for the amounts of text
that the language resources community often works with is
scant at best, and generally revolves around large numbers
of traditional processors being used to divide the work into
manageable units. Unfortunately, with corpora exceeding
the multi-billion-word mark, even these measures are un-
able to complete experiments within reasonable time, often
spanning days of operation (Wattam et al., 2014). In addi-
tion, enhancements designed for other areas of computing,
e.g., Cederman and Tsigas (2010) and Rashid et al. (2010)
have proved to be not well suited to corpus processing. In
recent years, high-performance, general-purpose graphics
processing units have become increasingly available to the
scientific community, and projects utilising them have been
met with considerable success as described in Deng (2010),
Melchor et al. (2008) and Sun et al. (2012). On the other
hand, their use in corpus linguistics and natural language
processing has been limited at best, and many areas of their
uses have yet to be explored.

21

the crowds of inquisitive people began to diminish and soon there were no more visitors Madame Caravan returning to her own
already to regard the corpse as though it had been there for months He even went the length of declaring that

He even went the length of declaring that as yet there were no signs of decomposition making this remark just at
the girl who had ascended the stairs were distinctly heard There was silence for a few seconds and then the child

in their places and was ready to go downstairs when there appeared before her her son and daughter-in-law Caravan rushed forward
agree to be bound by the terms of this agreement There are a few things that you can do with most

full terms of this agreement See paragraph C below There are a lot of things you can do with Project

Figure 1: A sample of the input set used for testing the sorting algorithms.

3. Method
To evaluate the potential gains of using General Purpose
Graphics Processing unit (GPGPU) techniques for corpus
retrieval operations, we chose to focus on one of the most
common and time consuming tasks that corpus linguists
need to perform, i.e., sorting the concordance lines gen-
erated from a database query. Once concordance lines are
extracted or displayed in a corpus retrieval system, corpus
linguists need to identify language patterns in the results
set. Due to the large number of results, the concordance
lines cannot be skim read manually, and so some pre-
processing is required, typically sorting. Most concor-
dancing tools, such as WordSmith Tools and AntConc,
can perform a multi-level sort of the results based on the
preceding and/or following words. However, this can be
a very lengthy operation, especially when many hundreds
of thousands of concordance lines emerging from large
corpora require processing.
The words we targeted for the corpus sort experiment were
taken from the published BNC frequency lists of “Word
Frequencies in Written and Spoken English” (Rayson et.
al)8, which were used with a corpus generated from the
Gutenburg Project books data9 to generate CSV input sets
as shown in Figure 1. These were loaded into memory in
full, and stored such that the entire concordance was kept
in RAM. While this may seem suboptimal, we did this to
attempt to present data that represented the performance of
the GPGPU device, rather than memory usage tricks. Ad-
ditionally, the batch-processing style of operation used in
GPGPU computing limits our ability to do most traditional
sorting techniques for large datasets, such as an external
merge sort, as the GPU does not support the recursion
depth required to process this data. Following the above
procedure, we could reduce the problem to an entirely data
oriented issue and avoid the characteristics of disks, buses,
networks and other hardware components interfering with
the performance measures.
Based on a preliminary investigation of different sorting
algorithms, we found most to be data-copy sensitive (re-
quiring many short batch operations and many host-device
memory copies). Thus, we settled on using the simplest
sorting technique, the swapping sort, for the analysis here.
In the swapping sort, concordance lines are directly loaded
into memory on the graphics card and processed in place
by comparing each line to its immediate neighbours in the
input set, and swapping the entries if they are incorrectly

8http://ucrel.lancs.ac.uk/bncfreq/flists.
html

9http://www.gutenberg.org/wiki/Gutenberg:
The_CD_and_DVD_Project

ordered. This is repeated until the entire set is sorted. While
this technique would be extremely inefficient on a CPU, it
works impressively well on a GPU, as we can perform large
batches (over 27,000 entries, on a nVidia GTX Titan) at
once. The relevant specifications of the machine used for
these tests is described in Figure 2.

• CPU: Intel “Sandy Bridge” i7, desktop edition
(quad core with hyperthreading support).

• GPU: nVidia “GTX Titan” graphics card, 6GB
video memory.

• RAM: 6GB Triple Channel memory.
• Disk: A generic 64GB 6GB/s SSD

Figure 2: The specification of the machine
used to perform the tests.

While the exact specification for the hardware is not par-
ticularly critical, to achieve similar results, the use of a
GTX Titan or better is recommended, as older cards have
smaller video memory areas, resulting in higher instances
of copying to and from the hard drive. The SSD is not
required, but was used for these tests to expediate the test
duration through eliminating the delays normally incurred
through using mechanical disks.

4. Results
The results of our tests can be seen in Figures 3 and 410.
Each sort phase used up to 10 words to the right of the
selected collocation word to sort the concordance against
its neighbours. Phases were repeated until a phase resulted
in no swap operations, and thus, the set was completely
sorted.
As can be seen in Figures 2 and 3, the GPU accelerated
sort consistently beats the sort on a normal CPU except
for very small input sets. Below an input set size of
2000 concordance lines, the CPU has a slight advantage,
as the GPU has a small delay involved with deploying
CUDA kernels11, causing the overall throughput to dip. On
the other hand, beyond 2000 concordance lines, the GPU
is several orders of magnitude faster than the CPU, and
remains consistently better throughout.

5. Discussion and Conclusions
The results here show that normal CPU processing becomes
impractical when sorting beyond 40,000 concordance lines.

10The data for these plots as well as additional data
can be found at http://johnvidler.co.uk/academia/
cmlc-2014/

11A CUDA kernel is the GPGPU equivalent of a CPU thread

22

Figure 3: The measured CPU and GPU performance measurements shown on the same axis. Beyond 40,000
concordance lines, the sorting technique took so long to complete on the CPU as to be useless, while the
GPU continued to perform exceptionally well. Note that the y-scale is logarithmic.

Figure 4: The first portion of Figure 3, showing the initial CPU advantage for very small numbers of
concordance lines.

In contrast, our framework for GPU processing allows
such operations to be completed exceedingly quickly, e.g.,
with 10 million concordance lines being processed per
second even with large datasets. Further gains can be made
through the use of threading on GPGPU devices, although
the library support available to the developer is not what
one would expect. This leads to problems implementing
more traditional sorting algorithms, such as external merge
sorting, with such a large input set. Many traditional
sorting algorithms require access to the hard drive and other
resources that are unavailable to the card during runtime.
The processing used in our tests is best described as ‘out-
of-data-path’ processing, as the data would not naturally be
processed where we are processing it. Normally one would
expect that moving the data further from where it is stored
would result in slower overall performance. However, with
the immense processing power available in a GPU, once

there, the gains more than make up for the longer data
path. Of course, while out-of-data-path processing may not
be ideal from a memory utilization perspective, our results
show that the performance benefits are worth the additional
overhead in the application described here and indeed, our
approach is likely to be useful in many other areas of
natural language processing. In conclusion, our results
show that the implementation of even simple algorithms
on GPU hardware has significant promise for linguistic
analysis of large corpora. Our approach thus has important
implications for the development of more powerful desktop
linguistic analysis tools. Given the performance shown in
the case study presented in this paper, we next intend to
implement other standard corpus retrieval operations using
our framework. Following this, we will start implementing
support tools for various other corpus annotation and NLP
operations, e.g. Part-Of-Speech (POS) tagging.

23

References
Daniel Cederman and Philippas Tsigas. Gpu-quicksort:

A practical quicksort algorithm for graphics proces-
sors. J. Exp. Algorithmics, 14:4:1.4–4:1.24, January
2010. ISSN 1084-6654. doi: 10.1145/1498698.
1564500. URL http://doi.acm.org/10.1145/
1498698.1564500.

Yangdong Steve Deng. IP routing processing with graphic
processors. 2010 Design, Automation & Test in Europe
Conference & Exhibition (DATE 2010), pages 93–98,
March 2010. doi: 10.1109/DATE.2010.5457229. URL
http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5457229.

Carlos Aguilar Melchor, Benoit Crespin, Philippe Ga-
borit, Vincent Jolivet, and Pierre Rousseau. High-
Speed Private Information Retrieval Computation on
GPU. In Proceedings of the 2008 Second International
Conference on Emerging Security Information, Systems
and Technologies, pages 263–272, Washington, DC,
USA, August 2008. IEEE Computer Society. ISBN
978-0-7695-3329-2. doi: 10.1109/SECURWARE.2008.
55. URL http://portal.acm.org/citation.
cfm?id=1447563.1447928.

Layali Rashid, WessamM. Hassanein, and MoustafaA.
Hammad. Analyzing and enhancing the parallel
sort operation on multithreaded architectures. The
Journal of Supercomputing, 53(2):293–312, 2010.
ISSN 0920-8542. doi: 10.1007/s11227-009-0294-5.
URL http://dx.doi.org/10.1007/
s11227-009-0294-5.

Weibin Sun, Robert Ricci, and Matthew L. Curry. GPU-
store. In Proceedings of the 5th Annual International
Systems and Storage Conference on - SYSTOR ’12,
pages 1–12, New York, New York, USA, 2012. ACM
Press. ISBN 9781450314480. doi: 10.1145/2367589.
2367595. URL http://dl.acm.org/citation.
cfm?id=2367595.

Stephen Wattam, Paul Rayson, Marc Alexander, and Jean
Anderson. Experiences with Parallelisation of an Exist-
ing NLP Pipeline : Tagging Hansard. In Proceedings of
The 9th edition of the Language Resources and Evalua-
tion Conference, 2014.

24

From several hundred million to some billion words:
Scaling up a corpus indexer and a search engine with MapReduce

Jordi Porta
Departamento de Tecnologı́a y Sistemas

Centro de Estudios de la Real Academia Española
c/ Serrano 187-189, Madrid 28002. Spain

porta@rae.es

Abstract
The growing size of corpora poses some technological challenges to their management. To reduce some of the problems arising in
processing a few billion (109) words corpora, a shared-memory multithreaded version of MapReduce has been introduced into a corpus
backend. Results on indexing very large corpora and computing basic statistics in this parallel processing framework on multicore
computers are reported.

Keywords: Corpus Indexing, Corpus Search Engine, MapReduce, Very Large Corpora Management.

1. Introduction

Corpus platforms to analyse very large corpora are scien-
tific instruments that create new opportunities not only for
linguistic research but also for research in all text-centric
humanities. Basic common operations needed in corpus ex-
ploitation are the creation of sub-corpora, the production of
lists or concordances of linguistic elements, collocation ex-
traction and distributional analysis. Corpus search engines
should give support to many types of queries like frequency
counts, distributions, collocations or n-grams in subsets or
over corpus partitions.

Corpora size has experienced an upward progression since
its beginnings in terms both of primary and annotation data.
In the 1960s and 1970s, the first generation of corpora, as
the Brown or the LOB corpora, reached one million words
each. In the 1990s, bigger corpora were released, as the
British National Corpus (BNC), a 100 million word corpus,
or the Bank of English (BoE), with 320 million words. The
compilation of corpora for other languages was an active
area in that decade. At the end of the 2000s, corpora be-
came bigger and diverse. Examples of corpora at that time
are the Corpus of Historical American English (COHA) and
the Corpus of Contemporary American English (COCA),
containing 400 and 450 million words respectively (Davies,
2009; Davies, 2010). At the time of writing this paper,
many corpora reach sizes between five and ten thousand
million words (Jakubı́ček et al., 2013; Kupietz et al., 2010).
A unique case is Google, which has released its n-grams
corpus, obtained from 5.2 million books with OCR tech-
niques, totalling 500 thousand million words.

The increasing size of corpora poses some technologi-
cal challenges to their management. We have introduced
MapReduce into a corpus backend with the aim of index-
ing very large corpora and integrating online dynamic sta-
tistical computations within the query engine. In this pa-
per, we report some of the results of the integration of
shared-memory MapReduce into a corpus backend running
on multicore processors.

2. The backend for corpus management
Roughly speaking, backends for corpus management could
be classified into two families: those based in relational
databases (Davies, 2005; Schneider, 2012), and those based
in inverted files, as Poliqarp (Janus and Przepiórkowski,
2007), Manatee (Rychlý, 2000; Rychlý, 2007), or KorAP
(Schnober, 2012), having CQP as a model system (Christ,
1994).
The system we are presenting here belongs to the same
family of CQP. It has been in use since year 2000 as an
indexing and searching backend giving in-house support
to lexicographers and linguists in exploiting some anno-
tated corpora —CREA, CORDE, CORPES, CDH and oth-
ers, including combinations1— reaching a maximum cor-
pus size of 500 million words. An earlier lexicometric ex-
ploitation example of this backend is given in Porta and
Ruiz-Ureña (2003). The search engine is also currently
answering, on average, no less than two million look-ups
per day in some online dictionaries: Diccionario de la
lengua española (DRAE)2, Diccionario panhispánico de
dudas (DPD)3, Diccionario esencial4 and Diccionario de
americanismos5, and in the electronic edition of reference
works such as the Nueva grámatica de la lengua española6

or the Ortografı́a de la lengua española7.
As for ISO:24612 (2012), a corpus is seen as a sequence of
textual positions where information in the form of attribute-
value pairs can be assigned. Wordforms, lemmas or mor-
phosyntactic descriptions are usually associated to corpus
positions but, depending on the application, many other
attributes can also be assigned: modern wordforms, part-
of-speech abstractions, combinations of morphological fea-
tures, syntactic function labels, and so on. Additionally, po-
sitional attributes can be multivalued in order to cope with

1http://www.rae.es/recursos/banco-de-datos
2http://lema.rae.es/drae
3http://lema.rae.es/dpd
4http://lema.rae.es/desen
5http://lema.rae.es/damer
6http://aplica.rae.es/grweb
7http://aplica.rae.es/orweb

25

ambiguity in annotation. Any XML markup appearing in
primary data is considered part of the data stream, but it
will not be considered part of the sequence of linguistic el-
ements at the level of tokens. Document’s meta informa-
tion like country, year, genre, author, etc. is encoded as
attributes of the document’s root element and is used to re-
strict searches as well as to compute frequency distributions
and dispersion.
Indexing is a key point for sophisticated corpus search
and retrieval. Positional or text attributes are indexed us-
ing inverted files, which allow the linear time processing
of queries combining restrictions on attribute-value pairs,
as well as distances between positions or other restric-
tions on short sequences (Zobel and Moffat, 2006). XML
markup indexing and querying has also been implemented
in the backend: XML elements and element’s attribute-
value pairs are indexed as regions represented by its doc-
ument offset and length as well as by the identifiers of the
first and the last token of the region they cover. Structural
indexes are implemented with interval trees on top of red-
black trees (Cormen et al., 2009, Chapters 13–14). Us-
ing these data structures, the querying of elements and/or
combinations of attributes and values, which involves op-
erations on intervals, has linear time complexity. More-
over, ancestor-descendant relationships can be expressed
in queries and computed in linear time since interval trees
are indices supporting efficient structural join operations
(Chien et al., 2002). All XML queries other than struc-
tural joins can be externally dealt with XPath or XQuery
processors. Textual and structural indexes can interact be-
ing it possible to query positions within particular regions,
regions containing particular positions and combinations of
both, all of them computed in linear time.
Besides the design decisions on the algorithms and the data
structures used by the backend, there are some system en-
gineering techniques with a direct impact on the backend
performance, as the mapping of data structures on mem-
ory in order to reduce I/O operations on disk, or the use
of RAID technologies to store the indices. What is more,
more than ten years of use and development have accumu-
lated a valuable set of improvements balancing size, speed
and query complexity. For instance: there is no query opti-
mization implemented but the query evaluation mechanism
has been made multithreaded. Another example is regular
expressions, which are allowed in queries and are matched
against the keys resulting from the sequential exploration
of indices. This process can be quite slow when the num-
ber of values of the index is very high, as it is for the word-
form and lemma indices. In those cases, the values of an at-
tribute are compactly represented as an in-memory minimal
acyclic automaton allowing matching to be implemented by
enumerating the strings produced by the intersection of the
regular expression with the automaton of the corresponding
index.

3. Scaling up the corpus backend with
MapReduce

For many decades, the doubling of the density of circuits in
every computer generation, known as the Moore’s Law, has
contributed to increases in speed of single-processor ma-

chines. Processors speed have benefited from faster clocks,
deeper pipelines, and superscalar architectures. However,
over the last few years, the lack of opportunities for im-
proving the processors’ performance and the possibility to
maintain lower power while doubling the speed of many ap-
plications has led the industry to a shift to multicore micro-
processor designs as the principal strategy for continuing
performance growth. Unfortunately, on the storage side,
despite disk space having grown at a good pace, latency
and bandwidth have improved relatively little.
When data size or processing needs are beyond the capa-
bility of a single machine, a cluster of computers is usu-
ally required. However, according to Appuswamy et al.
(2013), the conventional wisdom in industry and academia
for data analytics is that scaling out using a cluster of com-
modity machines is better than scaling up by adding more
resources to a single server. Popular infrastructures such as
Hadoop, which were originally designed for petabyte batch
processing, are being used in real-world analytics to pro-
cess jobs with less than 100 Gb of data, with an average
size of 14 Gb. They have proven that a single scaled up
server with Hadoop can process those jobs and do it as well
or better than a with a cluster in terms of performance, cost,
power and server density.
MapReduce is often defined as a parallel programming
model inspired by functional programming, which has been
found useful and easy to apply to practical problems. It is
also a design pattern that hides many of the system-level
details from the developer. To date, MapReduce is the
most successful abstraction applied to large-scale datasets.
Scaling up with shared-memory MapReduce eliminates the
bottlenecks of scaling out with cluster-based MapReduce,
eliminating disk I/O and network latency. However, shared-
memory MapReduce is still influenced by other workloads
as the key-value memory layout, memory allocation and the
framework overhead.
Phoenix++ is a C++ MapReduce implementation for
shared-memory multithreaded systems. It has been de-
signed to allow users to write high-performance code eas-
ily, with scalability comparable to hand-coded threads so-
lutions (Talbot et al., 2011). Phoenix++ has a modular
pipeline providing flexible intermediate key-value storage
abstractions allowing workload-tailored implementations
and a more efficient combiner implementation minimizing
memory usage. The following section presents some results
from the implementation of some corpus basic operations
in the indexer and the search engine using Phoenix++.

4. Experiments with MapReduce
In order to carry out some experiments with very large cor-
pora and provide a benchmark for other systems, we have
used the entire online archive of the Spanish newspaper El
Paı́s8, covering the period 1976–2011. After performing
some data cleansing and part-of-speech tagging, the size
of the corpus reaches almost 878 million tokens, includ-
ing punctuation, in 2.3 million news documents. Addi-
tionaly, nearly 23 million structural elements are present
as XML/HTML markup in the news. In addition to publi-

8http://elpais.com/diario

26

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09 8e+09

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

Corpus Size (tokens)

1 threads
2 threads
4 threads
8 threads

16 threads
24 threads

Figure 1: Elapsed time (seconds) for computing word
counts as a function of corpus size (tokens).

cation date and newspaper section, each piece of news in-
cludes some valuable metadata in the form of descriptors
or index terms. These keywords are the data which enable
social, political or cultural analysis in the spirit of Cultur-
omics (Michel et al., 2011).
Several corpora have been artificially constructed by ap-
pending two, four, eight and even sixteen copies of El Paı́s,
the biggest one reaching nearly fifteen billion words. Al-
though it can be argued that corpora generated in this way
are not representative of natural language, in the sense that
corpus and vocabulary sizes do not follow Heap’s Law,
we are using them to approximate results on naturally-
constructed corpus of similar size.
Experiments have been conducted on a Dell PowerEdge
R615 server with 256 Gb of RAM, two Xeon E5-2620
2 GHz CPUs (24 threads), and 7.200 rpm SAS disks in
RAID Level 5 configuration, running Scientific Linux 6.5.

4.1. Word counts
The most basic operation on corpora is word counting.
Full word profiles using a different number of threads in
MapReduce have been computed ten times for each cor-
pus. The relation between averaged elapsed time, corpus
size and number of threads employed is given in Figs. 1 and
2. The first thing to note in Fig. 1 is that, irrespectively of
the number of threads used, time scales linearly to the size
of corpus, which is an expected and desirable result. Note
that complete word profiles for four and eight billion word
corpus are computed in five and ten seconds respectively.
Another observation that can be made is about the num-
ber of threads used in the computation of profiles and its
performance. As Fig. 1 shows, the slope of the straight
lines becomes gradually more horizontal as the number of
threads is increased, which is equivalent to the slow descent
of time observed on the right side of the plot of Fig. 2. We
have to consider that the server is running other processes
and that as we approach the number of physical threads, the
performance of each thread decreases.

4.2. Word cooccurrences
Word cooccurrences is a starting point for a large body of
work in lexical distributional semantics including colloca-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of Threads

elpais.com x4
elpais.com x2
elpais.com x1

Figure 2: Elapsed time (seconds) for computing word
counts as the number of threads is increased.

tional analysis, word sense induction or semantic word vec-
tors. In order to measure the contribution of MapReduce in
reducing computing times, the cooccurrences of the high
frequency preposition ‘de’ (English ‘of’) have been com-
puted for distances one, three, five and ten.
Fig. 3 shows the variation of elapsed time when the dis-
tance, expressed as a radius, grows. Running time has been
averaged over ten runs and computed using a different num-
ber of threads on the basis of the Elpais.com corpus. Note
that the word ‘de’ appears more than 55.7 million times
in Elpais.com and that computing the frequency of all its
cooccurrences at a maximum distance of ten, on both left
and right sides, takes less than two seconds using twenty-
four threads.
How word frequency affects running time is shown in
Fig. 4, where times for frequencies of ‘de’ in multiples
(one, two, four and eight) of the base corpus have been
computed. As can be seen in the figure, the growth in run-
ning time as the frequency is increased is not linear at all,
but computing cooccurrences at distance ten for a word ap-
pearing 450 million times takes less than eight seconds.
As for word counting, the performance of threads com-
puting cooccurrences decreases as the number of threads
used by MapReduce approximates the number of physical
threads.

4.3. N -gram frequencies
Statistics on n-grams is another important building block in
many linguistic applications. Google and Microsoft have
made some statistics on fragments of the Web for n-grams
up to length five available. However, idioms, common ex-
pressions and named entities need longer n-grams to be
captured.
To compute statistics on variable length n-grams we have
adapted to Phoenix++ the implementation of the SUFFIX-
σ algorithm, which was originally designed for Hadoop
(Berberich and Bedathur, 2013). The algorithm applies
MapReduce’s grouping and sorting functionality only to
longest n-grams. Shorter n-grams and their frequencies are
obtained from the prefixes of the ordered maximal n-grams.
Using Hadoop over a cluster of ten server-class computers
with the one billion word New York Times Annotated Cor-

27

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8 9 10

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

Radius (tokens)

1 threads
2 threads
4 threads
8 threads

16 threads
24 threads

Figure 3: Elapsed time (seconds) for computing the coocur-
rences of ‘de’ in Elpais.com as the radius is increased (to-
kens).

 1

 2

 3

 4

 5

 6

 7

 8

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08 4.5e+08

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

Frequency

radius=10
radius=5
radius=3
radius=1

Figure 4: Elapsed time (seconds) using twenty-four threads
for computing the coocurrences of ‘de’ as a function of its
frequency in different size corpora (consisting in several
copies of Elpais.com).

pus9, arbitrary length n-grams with a minimum frequency
of five were obtained by this algorithm in less than six min-
utes.
Cluster-based MapReduce solutions to n-grams such as
Brants et al. (2007) or Berberich and Bedathur (2013) use
hashing on the first or the two first words to bin n-grams
into partitions more evenly. In the case of Phoenix++, it
provides hash tables for the workload of n-grams and we
have hashed whole sequence.
In order to measure the performance of the SUFFIX-σ im-
plementation with our shared-memory version of MapRe-
duce we have used Elpais.com’s news metadata to apply the
algorithm to samples of different size. As can be seen in
Fig. 5, results do not always scale linearly and depends on
the particular sample. The performance is worse than that
obtained by Berberich and Bedathur (2013) scaling out the
problem. This result suggests that there could be still room
for improvement, perhaps by implementing other contain-
ers or using more adequate hashing functions.

9http://catalog.ldc.upenn.edu/LDC2008T19

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

Sample Size (tokens)

2-grams to 3-grams
2-grams to 5-grams

2-grams to 10-grams
2-grams to 20-grams

Figure 5: Elapsed time (seconds), using twenty-four
threads and the SUFFIX-σ algorithm, for computing n-
grams as a function of sample size (tokens).

4.4. File inversion
File inversion is one of the first and most paradigmatic ex-
amples of use of cluster-based MapReduce (Lin and Dyer,
2010). To evaluate the implementation of file inversion us-
ing shared-memory MapReduce we have indexed several
multiples of Elpais.com corpus up to thirty-two.
On the one hand, the indexing of text poses no problems to
its implementation with MapReduce since the aggregation
of posting lists can be implemented as simply concatena-
tion of those lists. On the other hand, the indexing of the
structure can also be implemented easily with MapReduce
since interval trees emitted during the map phases can be
combined and reduced with the join operation on red-black
trees, which have a running time proportional to the differ-
ence in tree height (Cormen et al., 2009, Exercise 13-2).
A corpus containing sixteen consecutive copies of El-
pais.com, totalling 15.6 billion words and 36.5 million doc-
uments, has been indexed using MapReduce. In order to
avoid exhausting memory, indices are dumped to disk every
million documents, corresponding roughly to 400-500 mil-
lion words. Running time for text indexing, annotated with
lemmas and morphological analyses from part-of-speech
tagging, but without considering the structure, is shown in
Fig. 6. As is apparent, time scales well but not linearly with
the size of corpora. However, it has been observed that disk
access becomes a bottleneck when many threads are simul-
taneously reading files on the same disk.

5. Conclusions
According to Lin and Dyer (2010), the more observations
we gather about language use, the more accurate a descrip-
tion we have of the language itself. However, practical ap-
plications must be able to scale up to the size of the datasets
of interest. Scaling up with shared-memory MapReduce on
multicore computers clearly reduces processing time and
scales well with corpus size, making it possible to index
corpora with size in the order of tens of billions of words
and to obtain basic statistics of interest on corpora beyond
the few billion words.

28

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64

 0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

E
la

p
s
e

d
 T

im
e

 (
h

o
u

rs
)

Corpus Size (tokens)

Figure 6: Elapsed time (hours) for text indexing as a func-
tion of corpus size (tokens). Samples taken at intervals of
400-500 million tokens, after saving indices to disk.

6. Acknowledgements
We want to thank our colleagues of the Computational Lin-
guistics area of the RAE for the millions of queries over
almost fifteen years of the backend’s lifespan, for using it
sometimes in strange ways, and for considering the use of
the backend in almost every project we started, even when
it wasn’t a priori the best option.

7. References
Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson,

O., and Rowstron, A. (2013). Scale-up vs scale-out for
Hadoop: Time to rethink? In Proceedings of the 4th
Annual Symposium on Cloud Computing, pages 20:1–
20:13, New York, NY, USA. ACM.

Berberich, K. and Bedathur, S. (2013). Computing n-Gram
Statistics in MapReduce. In 16th International Con-
ference on Extending Database Technology, EDBT ’13,
Genua, Italy.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean,
J. (2007). Large language models in machine transla-
tion. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pages 858–867.

Chien, S.-Y., Vagena, Z., Zhang, D., Tsotras, V. J., and
Zaniolo, C. (2002). Efficient structural joins on indexed
XML documents. In Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases, VLDB ’02,
pages 263–274.

Christ, O. (1994). A modular and flexible architecture for
an integrated corpus query system. In Proceedings of the
COMPLEX ’94, pages 23–32.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms. The MIT Press, 3rd
edition.

Davies, M. (2005). The advantage of using relational
databases for large corpora: Speed, advanced queries,
and unlimited annotation. International Journal of Cor-
pus Linguistics, 10(3):307–334.

Davies, M. (2009). The 385+ Million Word Corpus of
Contemporary American English (1990–present). Inter-
national Journal of Corpus Linguistics, 14(2):159–190.

Davies, M. (2010). More than a peephole: Using large and
diverse online corpora. International Journal of Corpus
Linguistics, 14(2):159–190.

ISO:24612. (2012). Language resource management –
Linguistic annotation framework (LAF). Technical Re-
port ISO 24612, ISO.

Jakubı́ček, M., Kilgarriff, A., Kovář, V., Rychlý, P., and Su-
chomel, V. (2013). The TenTen Corpus Family. In 7th
International Corpus Linguistics Conference, Lancaster.

Janus, D. and Przepiórkowski, A. (2007). Poliqarp: An
open source corpus indexer and search engine with syn-
tactic extensions. In ACL 2007, Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics, June 23-30, 2007, Prague, Czech Republic.

Kupietz, M., Belica, C., Keibel, H., and Witt, A. (2010).
The German reference corpus DeReKo: A primordial
sample for linguistic research. In Proceedings of the 7th
conference on International Language Resources and
Evaluation (LREC-2010), pages 1848–1854, Valletta,
Malta.

Lin, J. and Dyer, C. (2010). Data-Intensive Text Pro-
cessing with MapReduce. Synthesis Lectures on Human
Language Technologies. Morgan & Claypool Publishers.

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray,
M. K., The Google Books Team, Pickett, J. P., Hoiberg,
D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak,
M. A., and Aiden, E. L. (2011). Quantitative analysis of
culture using millions of digitized books. Science, 331.

Porta, J. and Ruiz-Ureña, R. J. (2003). Lexicometrı́a de
corpus. Procesamiento del Lenguaje Natural, 31.

Rychlý, P. (2000). Korpusové manažery a jejich efek-
tivnı́ implementace (Corpus Managers and their effec-
tive implementation). Ph.D. thesis, Fakulta Informatiky.
Masarykova Univerzita, Brno.

Rychlý, P. (2007). Manatee/Bonito - A Modular Cor-
pus Manager. In First Workshop on Recent Advances
in Slavonic Natural Language Processing, pages 65–70,
Brno.

Schneider, R. (2012). Evaluating RDBMS-based access
strategies to very large multi-layer corpora. In Proceed-
ings of the LREC 2012 Workshop: Challenges in the
management of large corpora, Istanbul, Turkey.

Schnober, C. (2012). Using information retrieval technol-
ogy for a corpus analysis platform. In Proceedings of
KONVENS ’12, pages 199–207, September.

Talbot, J., Yoo, R. M., and Kozyrakis, C. (2011).
Phoenix++: Modular MapReduce for shared-memory
systems. In Proceedings of the Second International
Workshop on MapReduce and its Applications, pages 9–
16.

Zobel, J. and Moffat, A. (2006). Inverted files for text
search engines. ACM Computer Surveys, 38(2).

29

�����������	�
��������������������������
���	�������
�����

����������	����	�������������

�	����������

�����������	
��	
������������������������

�����	�	��������
���
������
������	���

����
������������	�����������

�����������	���
������

������������������

�����������	
��	
������������������������

�����	�	��������
���
������
������	���

����
������������	�����������

������������������	���
������

�

�����	���

����	�������
���
��
����
��������	������
����
����
	�������������������
���
������
������	���
����
���

�
	���������������
������������	����������������	������	����
�����������������
��	�
�����	
�����������	��

����
�
�����������������
�������������������
��	����� �����	���	��������������������	
�����������	
����	����

�	�����
�!��� ��"�� ����� ���� !���� !����� ��	��� ���� �
��������� 	�� �	
����
����
��� ���� !�� ����� ���� 	�� �	
�

�
��������
����
��� ��
�	���� ��� ���� ������ 	�� ����
�
�� ����� ��������� ���� �	�������� 	�� �� �	
���#!�����
����	�	�	���������
	����	�� ����
�
�� ����� �������������!���
��������!�� ������������������ �������� ���������

���� ���� ��������� ��������� ���� 	�� ����
�
�� ����������� ����
������ �
������ ����
��� �������� 	�� ����
����
���

 �����	��������
�����!������������������������������������	�	�	���������������	���	����������	
����!�����

�����������	�� ���
�!�� ���������
������
�����������������
���
���	� ��
���������	
�	
������
�
�� �����������

�
	��
����� ����� ���� !��
��	���"��� ����
������
��� !�� ������ 	�� �� �	
���#!����� ������ 	�� ����������

���
��	
�� ���� ����
�
�� ������ 	�� ���� ����#����
���� �������� �	
����$� �� �����
	���� %�
���� ���������

�������� ����� �	
���� 	���	
�� ����� &''������	�� �	(���$� ����� !�� ����� ��� ��������� �	
� �����
����
��$� �����

�	�������������� �����������!����� �	
����	
�������������������	
���	�� ���	� ���� �������	�� �����	�
�����������$�

�����������	���
����	��$���

�������
	����
�������
���������������	���
�������������������	������
�
����������

����������	
��������������$����
���
�$��������������

�
�

��� �����������	�

���� ����� #� ����
���� �������� �	
����� ��� ��
�������������
	����%�
������������� ������	
����

	�� �	
�� ����� &''� �����	�� �	(�����)������ �����

�	
�����������
	������ ����
�
���	������	���������
���������������	
��	��	������	��
�����	������������

������	
�����	��
���������
�����	�������	��������

��
����������������
�����	�������
����������������
���
��	
� ���� �����	��	�� ��
����
���� ������ ��
���

��	����� 	�� ������ �	
� ���� ��
�	��� 	�� ����
�
��

����������������
�
�������������� ����������������

���� 	�� ���� �
���
��
����
��� ����� 	�� ����

����
��� �
	��� ��� ���� ���� �� ���
���
�� ���

�
������	���
����
��� �
	��� ��� ���� ����������� �	
�

�	
�����������������������������	�	�����������
�����
������������	���������������*����������	�

�����	�� ��
��� ����� ���������
��	�
���� �	
� ����

������ 	�� ����
�
�� ������� ����� ����
� ����� ����� ���

	��
�����	��������������������������������
����������

���� ������ 	�� ���� �� ���
���
�� ��� �
������	��$�
���
�!������������������	���������������������	���

!	��� �������� ���� ��������"��� ����
���
�� ����� !��

��(��� ���	� �	�����
���	��� ��� ������	�� �	� ����$�

!�������	����������+��
����
���
�+������
�����
������������������
�������	
�����������	
�	
����(��

��������#�����
�������������	
����������
��

�	� ���� �����	�������!�������$��	����������������
����	
�����������	
����	�����	�����
�!�����"�������

���� !���� !����� ��	��� ���� �
��������� 	�� �	
����

����
��� ���� !�� ����� ���� 	�� �	
� �
��������

����
��� ��
�	���� ��� ���� ������ 	�� ����
�
�� �����

��������� ���� �	�������� 	�� �� �	
���#!�����

����	�	�	���������
	����	������
�
���������������

����� !�� �
�������� !�� �������������� ���� ��������
 ��������� ���� ���� ��������� ��������� ���� ��� ����

������	�� ���� �	
���$������������!�������	������

���� ����� �������!��� ����� ���� ����� 	�� �	
����
����������������� �������� ��������������� �	����	��

30

����
��� �������� 	�� ����
����
��� �����	���

������
����� !�� ����� ��������� ���� �������� ����

����	�	�	������ ���������	��� 	�� �� �	
���#!�����

�����������	�����	���������	������������������
�
��
����������
�
�� ������������
	��
����� ����� ����!��

��	���"�������
������
���!��������	�����	
���#

!����� ������ 	�� ���������� ���
��	
�� ���� ����
�
��
������ 	�� ���� ����#����
���� �������� �	
�����

�����!��������������������	
������
����
���������

�	�
��� ��� ��� ������ ����� !����� �	
� �� �	
����
����������� ����	
���	�� ���	� ���� ������� 	�� ���������

�����	�
������ �����$� ���������� �	���
����	��$�

��

������ �
	����
��� ����
������� �������

�	���
���� ����� ���� ������ 	�� ����
�
�� ������� ����
�	
���#!����� ���
	���� ���	��� ��
�	��� ����� 	��

����	�	������
����
�����������������������

�
�

�
�

�
,	
� �	
���� ������������ ���� �	
���� !�����

���������
����
��� ��
��� ������	
�	
������� �	�!��

��
����
��� ��� �� ����������� ����� ,	
� �����
��
����
�����
�	����������������(��������	������

�	��	��	���	������
��-���	������
���������	������

	�� �	
����
����
��� ��� ����
������ �� �����!���
������� 	�� �
��������
��
��������	�$�

����������	�$� �	��������	�� ���� ��
����
���

��	
����	�����	������ ������	�� ���������� ������	��

��
�������������
����	
��������	
����������	���
�
	���� �������� ������ ��� ��
���������� �	
� ����

����
������(�	��
��
��������������������!��.������

�������	������	��	�������	
����������������	������
���������� /���	��� !����� ��	�� ��
����
���

�	
����"���	�� ���� ������
��"���	�� ����� �	� !��

�����	�������	
��
��	��
	����������������
�������

�	
� ����� ��������� ����� ����
��� ������� ��� ���� ����
�	
�� ������ �	
� �� ��
��� ��!�	�
���� 	�� ����
�
��

������ ����� �����	��� ���������� ���� ���
��� �����

������	�!�����	�������	
��
�

���� ����#����
���� �������� �	
����� ������

�����
��������	�������������������
	�����������

0&'� ���
�� �
�� �
��	���������%�
���� ���������

������ ���� �
�� 	�� �	�����
�!��� ����	
����� ����
�����
�������������������	����������+���	�
���$�

������ �	��
� �����	��� �	������ ���� ���
��$�

���
�� �
�� ����
�
�� .	�
����$� ��������
�$� �	����$�
�
����$� �	���$� ����
���������$� ������$� �
�����

���	����$� �		(!		(�$� ���������$� �	��������

��������� ��� ����� ��� ������� 	�� ����������$� �����$�

�����	��� �����$� �	� ����� .���� �� ����� ����

����	
����� ��
�	�� �	��
��� !�� ���� �	
���� ���

������� �
	�� ����0121�
��	����	�� �	� ���� ����� 	��

���� �
	�� ��
����� ��� 0313�� ��� ����� ��
�	��
������������ ����	
����� �������� �����
���
(�!���

�����������	������������������������������������

���� !�� 	!��
����� ��	������� 	�� ���������
�	�������� ���� ����
�
��	!.�����!�� ��	�������	��

����	
�� ����� !���� �	�������$�
��
��������� ���

���	��������
�����	�������
����������������
	������
	��
� ���� %�
���� ����(���� �
����� ���� ����

�	
���� �	������� �
	����� �� �
���� ���!�
� 	��

����!���
��	�
���� ���� ����
������� �	
���� !�����

���
	�������	
� �����������	��� ���	� ���� �����������
���� ���������
	��
�����	�� ������ �������/	
�� �����

&''� �����	��
������� �	
��� 	�� ����� ����� !����

�������$� �	���
���� ���	� �������#
����!��� �����
�������	�����������!�������
����
�����
(#�������

��������������������
(#�����

�

�

�
�

����
����
��������������	��	����	������	�������

��	�
���� �	
� ��(���� ��
��� ��	����� 	�� ������
�������!��� ��� �� ����#��
����
��� ����� ���� ����

�	������
$� �� ����������� ����
��� ���� ����#

��
����
��� ������� �	���� �	� ���� �	������� 	�� ����
����
�� �	
���$� ����� ��(�� �	
�� ���������

�����������	��� ���	� ���� ��������� ��������� 	�� ����

�������	���!����

31

����	��
�����	�	���
��	
���#	
��������
	.����$�����

���� �
	������ �
	�� ����
�
�� ���� �����

�����	�
������
����
�����	
����
����
�����������

�
����	��	����
��������
	����������	������	��������
�
�����	������ !���� ���� �	����� 	�� �����������

���
�
�� ������"���	�� ������������ ��
�� 	�����

���
������ �	� ��
������
� �
���
�$� ����� 	�� ������
�
	.����� ���� ������
� �
	����� ��
��� ��	����� 	��

������	
���
����
����
���	������	���	���	���	�

���(��� ���� �
	!����� ���	����� ��� �	
(���� �����
����� ������ -����� ���
�� 	�� ���� ����� 	�� ��������

��	�
���� �������� ������� 	�� ���� ����������$� ����

�������� ���
���� �	��	
(�	�����������	��$� �		���

���� ����	��� ���
��� �	��
��� �� ����
�
����� 	��
���������	��� �
����� �	� ��
���� �� ����� 	�� ����#

	
������� �	���������)����� ���� ������ 	��

���������� ����� �	�� !���� ���	
��$� ����� �
���� �	�
�	
(� �	��
��� ���������	��� ����� ���	� 	���
���

������� �	� �	��
���� �����$� �	�������� ����� �	
�

����� ���������	��� ��� ��� ����������!��� �	
�

����
���
���	��������������	��������������������

�

���� ���� �		��� ����	
�� ����� �����	�	��� ������

���	��� !	��� ���� �	��
	����� ���������	�� 	��
��
(�����������������	��������������	��	����
���

��	����� 	�� ������ ���� ���� �������� ���	�����

�����������
����
�"���!�����	�!��������
	����
�	������
��!	�����
����
��������
���	���������������

����� ����� ��
����� ��	����	�����������
�!���� ����

��������� �����
����� 	�� ���� 	
������� ������� �����

���
	���� ���� ���� �	� ��!
��� �������� 	�� ��
(���
�	�� 	����
��
��������� ���� !����� ���������

��
����
��� 	�� ���� ������ !��� ���	� ���	���

���	
����	�� ���� ���	
����	�� �!	��� ���� �
������
������� ���� ���� ���	�
�������� ����������� ���

������"���� ����	
����� ����$� ��������� ����

�
��������	���� ����� �����
������ ����
��������
)�����	
(����	�� ��
��� ��	�����	�� ����� �����$�

��� ��� �	�����
�!��� �����
� �	� �����
�� �	
���� �����

������	��
�����������	�
���������	����
���������	�

�	�����������
����
�����
(�������������	�������
����
������� ��������� �	���
����� ���� ������"���

	!.����� ����� ��� ��	
��� ��� ��
�����	���� ����!����

�	��������� �
	���� 4'''�
��	
��� �	������ ����

�������� ���	
����	���!	��� �������������	!.������

5����������!����������	
(���� ���
���
����
���	
�

���� �������� ������ ������!��$� ���� ���� ���
�����	����� �	
�� �	������������ ����	��� 	��

�����"���� ��
��� ������ �	
�	
�� 	�� ���� !����� 	��

��
�	�������!�����������������������6/#���
��

��������� �		��� �	� ����!����� ������
�� �
	����
���
	�� ���������� ��
��� 6/� �����
��	���	
����� ����

���7��������"���� ����������� �
�� ���
����
�"���!��

�� ��
	��� �	������	�� �	� ���� ��������� 	!.����� 	��

������"���	��� ����� ���� !�� ����� ��� 	��� 	�� ����

�	������!������ ���� 	��#����#	��#������
�������$�
������ �������� ����� ����� ����� 	�� �� �
������

��!������	�� �����	
������������
������������	!.����

��� ���� �������� ������� ������ #� !�� ������ 	��
�������������������������(����#��	
����
��
���������

	!.����� ����� ��� ��
��
��
�������	��
���� �������-��

�	���� �	$� ���� ���� ��������� ���	
������ �	� ����
�����������
����
���	�� ���� ���������������� �	� ����

��������������
�����	�������������

�

�

8�� �������������
�

���� ����
�� 	�� 9�
�� 9
���� ���� ���� ���� 	��

��
���	�	������ ��������� ���	�� ����
������
�������

���
���	���������	�����	�������������	
��������

���� ��� ��
������
� ���� ����
����� �
�������� 	�� ����
��������� ����	������ ���� ������ 	��

��
���	�	������ ���� ��.	
������ ��������� ���� ���

���	�
��������	������	
������
�������	�	�	������
 �����	��� 	�� ��������� ���� ��
���	�	��� ���

����
��� �	������	
��	
����
����
���� ���� ���������

	�� ������������ ��������� ����� !�� �	�����������

����� ���� �����	�
������ ��������� ���� ����
�	���������	�� 	�� ���� ���� 	�� ���
����	��� �	� !��

�	�����������:����	��
��	�����	��$��);
��
!����

��
�<������
����"����
��	��9�
��9
����0133�!���
03=>� ��
�������!�����?������
���� 7:��� ,��(��7��

��!����������0333���

�
�

�
�

��� 8''1� ���� ����#�����	��
�� 	�� ��.	
������
���
����	��$� ���� :����	��
�� 	�� ����������$�

���������;
��
!���� "�� ��
� �	�� 9�
�� 9
����

0133�!���03=>���
�������!�����?������
���� 7:���
,��(��7�� �	��	����� -	��� �����	��
���� ��
�� !�����

32

��	���	
��������	�������	���
�������������������

���	� ����
����
��� �����	��� �����	���� �!	���

�	���
����� ���	��$� �
	��
!�$� ��������"���

������	
�$�����
�������	��	���������������(���
�

�
�
��� �� ���
�� !		(� �
	.���� !����� ��	�� ���� ����
�
��

������ !�� 9�
�� 9
���� ��������� ����� !�� ������ �	�

���� �:
�����)����
��������@� A���
��)����
����
B����C��
������!����������
�������03==$������������

!����(���������������	
���$���	���	���
��	�
���$�

��� �� ���
����� �	���� �	
� ����� ��������� ���� ���
�	���
��� ���� ���� ���	� ��� �� ���
����� �	���� �	
�

������������	���	
������	
��������������������	�!��

���
���� ��� ���� �	��� ���	
����� �	�����	
�
��

�����	��%�
���� ����
���
���������������B���	����
�	��������� ��� ���� �:
�����)����
����������9�
��

9
���������	���������������
��
	���
�������	��

���� B�"��
������ ��� ��
��� ��� /��� 03==� ����
�	��������� ���� �	�������� ��	�� ����

��
��
	��� ��������� 	�� ����� ����� ��� ����
	���

����������

�
��	������
	.�����������	�!�������	������������

����
� 	�� ������� 	�� �
	�������
����
���

����
������� !����� ��	�� �
��������� 	�� �	
����
�����������$� ���� �������� �����	��� 	�� ���� ����
�
��

.	�
����� �:��� ,��(���� � ���� �:�
� -
����
�$� ����

���#,��9D�����-<DBBD<��B�BD��5	��
�����������!�������	
�����������	�
���!�������	��

���� �
��������� 	�� �	
����
����
��� !�� ����� �	
�

����
��� ��� ���� ������ 	�� ����
�
�� �������E� ����

���	
����� �����
�� �	� �������� ����� �	��� ��� �	�
�
	����� ��� ����
����� ����� ����� ������	�� ��� ��

�����������
������������������
�������
���������

���� ����� ������ ���� �����	�� ����
����� �	
� ����
���#,��9D$� ��(�� ���� ���	��� 	��$� -
����
�

	�����$� ��������� ����������� �
����������
	��"���

������� 	��� ������� ����	��� ���� �
����� ���� !��

	������ ���� ��	���� ���
� ��
���� ���� ��
������

�����	�� ��������� ������� ���� ��
��� �
���� �
	������

������	���� ���	
����	���!	��� ����!��(�
	����	��

���� �����	�� ���� ���	��
��� ������� �!	��� ����
.	�
����������	������������	���
	��������������	�

������	���
���	�����������������	�������	�������	��

���� .	�
���� ��� ��
	�	�	������ 	
��
�� ���� �����
�����	�� ���� �� �	������ ���� �	��
����

��������	����!�
���������	���	����������
����
�����

������� ��������� ����
���� ������� ���� .	�
����
�����
��������#�	���	
���������#�	����
	�������

�	� ����$� �
	�� ����� �	� ����$� �
	�� ������ �	� �����$�

���� ����� ���� ����� 	�� ����
���(��� �
������� ���

���������� ������!��� ��
����
�� ���
��
	������"���
����	
����� .	�
����� �	���� �� ���!�
� 	�� �
	!�����

	�� �	�� 	�������� ��� ���� �	�������	�� 	�� �	�������

�����������
����
�� ������������� ���� ������ ��� �	�
�
����� ��� ������������� �����	�F� �
	������� �	�����$�

�
	�� ����� �	� ����$� �
	�� ������ �	� �����$� �
	��

�	������	��	����������
����
������
�������������
��� ��	�����F������!������� ����������� �����	
����

���������� ������� ���� ���
��� ���� ������ �����	��

������ ������� �	� �� ��
����� 	�� �������$� ����!�����

��������#��������
�������������������
�������	��
������ ��
���� ���� ������ �
�� ���������� ��� ����

��.������
������� �����	��� ������ �������� �����	���

����� ������	������	����� �	
�������
����������	���
�	
� ���� ������� �	� �	
���� !����� ����� ��������

�
	������ �	
� ���	��
�� ���� ���� ����
������ ��!����

���(��� ����� �
	����� ����#��
����
��� ���� ����#

�����������������	������	�
���������
�����	
	����
��
���� 	�� ���� ��
�	������� �����	���� ��� ����

.	�
���$� ����� ����� ���� �����!�������� ����

��
����������� ����
������������������������������
�
	������ ��
��
���
������ �	� �������"���	�� ����

���������������	���	
�������� ���	
����	���G���

���� ������ ����� ���� �
������ !�� �� ������
��
�����
���

�

�

33

�	� �	� ����
�
�� ���� ����	
�����
����
��� ��� ���

����������!����	��������������	������������������
�

����
����� ���
��	
�$� ������� ��� 	���
��� �	� ����

�	
���� �	�� 	���� ��
	���� ��
��
������ ������ !���
���	���
	��������!
�
����������������	���
����
��

�	� ��������� �	� ���� ����
��� ��
�� 	�� ���� �	
�����

���������	
����!
	���
��		���������	�!�������
��� �	
(� �	
� ���� �����	������
$� !�� ������ ����

�	
(���� �
	��� ����
������� ���� �
����	
(� �	
�

���� ����
�� �
��������	�� 	�� ���� �	
���� ���
��
������
��	
����� ����
�
��.	�
����������	��	������

����
���	
�����

��� ��
��������

���#����
���� �������� �	
���F� ���#,��9D��

������� *�
��	�F� H:��� ,��(���� 5�
�����!�
F� 9�
��

9
���$�)���� 0133#03=>I�� ���� :������� D����	��

B	� 0� AD���	
�#��#�����F� 5���	� -�!�
$� D������

-
��������
$� 5���
���� 9�!��$� 9�
�����"� /;
��C$�

����F�������������������(���

���#����
���� �������� �	
���� ���� -
����
#

�
����F� � -<DBBD<� �B�BD�� ������� *�
��	�F�

H:�
� -
����
�� 5�
�����!�
F� ������ ,��(�
$�

����!
��(� 030'#03&2I$� ���� :������� D����	�� B	�
8$� AD���	
�#��#�����F� 5���	� -�!�
$� D������

-
��������
$� 5���
���� 9�!��$� 9�
�����"� /;
��C$�

����F����������������!
����
�

-�!�
$� 5���	J� -
��������
$� D������ A8'08CF�

,�������
�������	����	��� �	(����� 	������ ����

���� �	������
� ����� ����� <��	�
���� �	
� �����

��������� ��F� G
	��������� 	�� <D�� 8'08�� 1���

�������� <��	�
���� ����D�������	�� �	���
����$�

/���� �	���
����$� �����!��� 8=�#8&�� &�� 8'08�� D���

-�� ���"	��
�$� B��	�����J� ��	�(
�$� 9�����J�

:����
�($� ����

�J� /�
����$� K	������ �����!���

<D��8'08$����=1�A�
��������	�����C���

-�!�
$�5���	J�-
��������
$�D������A8'08CF���������

�	������
F� /�������� ����� <��	�
���� �	
� �����

��������� ��F� G
	��������� 	�� <D�� 8'08�� 1���

�������� <��	�
���� ����D�������	�� �	���
����$�

)	
(��	�$� �����!��� 8=�#8&�� &�� 8'08�� D��� -���(�$�

G�	�
J�9�����"$�/�
�J�)���$����
����������������!���

<D��8'08$����2=#22�A�
��������	�����C���

)��"��$�)�
��
� A8''1CF� ��������;
��
!���� "�� ��
�

�	�� 9�
�� 9
���� 0133� !��� 03=>� ��
�������!�����

?������
���� 7:��� ,��(��7� L��� =� �	�����FM�

�����!��������$� ��
	�	�	�������$� D����(��������
����
������������G
���$�*��������

)��"��$�)�
��
�A0333CF�);
��
!������
�<������
����

"�� ��
� �	�� 9�
�� 9
���� 0133� !��� 03=>�

��
�������!����� ?������
���� 7:��� ,��(��7��

����
������������G
���$�*�������

�

�

34

